Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's convert the given equation of the circle from its general form to its standard form step-by-step.
Given equation:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
To convert this to the standard form of a circle, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we need to complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms.
1. Complete the square for the [tex]\(x\)[/tex]-terms:
- Start with [tex]\( x^2 + 8x \)[/tex].
- Take half of 8, which is 4, and square it to get 16.
- Rewrite [tex]\( x^2 + 8x \)[/tex] as [tex]\( (x + 4)^2 - 16 \)[/tex].
2. Complete the square for the [tex]\(y\)[/tex]-terms:
- Start with [tex]\( y^2 + 22y \)[/tex].
- Take half of 22, which is 11, and square it to get 121.
- Rewrite [tex]\( y^2 + 22y \)[/tex] as [tex]\( (y + 11)^2 - 121 \)[/tex].
3. Substitute these completed squares back into the original equation:
[tex]\[ (x + 4)^2 - 16 + (y + 11)^2 - 121 + 37 = 0 \][/tex]
4. Combine the constants:
[tex]\[ (x + 4)^2 + (y + 11)^2 - 100 = 0 \][/tex]
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
So, the equation of the circle in standard form is:
[tex]\[ (x + \boxed{4})^2 + (y + \boxed{11})^2 = \boxed{100} \][/tex]
5. Identify the center and radius of the circle:
- The center of the circle is at the point [tex]\((h, k)\)[/tex] which is [tex]\((-4, -11)\)[/tex].
- So, the center of the circle is at the point [tex]\( (\boxed{-4} , \boxed{-11}) \)[/tex].
Therefore, the completed answer is:
[tex]\[ \text{The equation of this circle in standard form is } (x + \boxed{4})^2 + (y + \boxed{11})^2 = \boxed{100} \][/tex]
[tex]\[ \text{The center of the circle is at the point } (\boxed{-4}, \boxed{-11}) \][/tex]
Given equation:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
To convert this to the standard form of a circle, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we need to complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms.
1. Complete the square for the [tex]\(x\)[/tex]-terms:
- Start with [tex]\( x^2 + 8x \)[/tex].
- Take half of 8, which is 4, and square it to get 16.
- Rewrite [tex]\( x^2 + 8x \)[/tex] as [tex]\( (x + 4)^2 - 16 \)[/tex].
2. Complete the square for the [tex]\(y\)[/tex]-terms:
- Start with [tex]\( y^2 + 22y \)[/tex].
- Take half of 22, which is 11, and square it to get 121.
- Rewrite [tex]\( y^2 + 22y \)[/tex] as [tex]\( (y + 11)^2 - 121 \)[/tex].
3. Substitute these completed squares back into the original equation:
[tex]\[ (x + 4)^2 - 16 + (y + 11)^2 - 121 + 37 = 0 \][/tex]
4. Combine the constants:
[tex]\[ (x + 4)^2 + (y + 11)^2 - 100 = 0 \][/tex]
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
So, the equation of the circle in standard form is:
[tex]\[ (x + \boxed{4})^2 + (y + \boxed{11})^2 = \boxed{100} \][/tex]
5. Identify the center and radius of the circle:
- The center of the circle is at the point [tex]\((h, k)\)[/tex] which is [tex]\((-4, -11)\)[/tex].
- So, the center of the circle is at the point [tex]\( (\boxed{-4} , \boxed{-11}) \)[/tex].
Therefore, the completed answer is:
[tex]\[ \text{The equation of this circle in standard form is } (x + \boxed{4})^2 + (y + \boxed{11})^2 = \boxed{100} \][/tex]
[tex]\[ \text{The center of the circle is at the point } (\boxed{-4}, \boxed{-11}) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.