Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What is [tex]\sin 28^{\circ}[/tex]?

A. [tex]\frac{8}{15}[/tex]

B. [tex]\frac{15}{8}[/tex]

C. [tex]\frac{8}{17}[/tex]

D. [tex]\frac{15}{17}[/tex]


Sagot :

To find the value of [tex]\(\sin 28^{\circ}\)[/tex], we start by understanding that the sine of an angle in degrees can be computed using trigonometric functions. Given the continuous nature of trigonometric functions, the exact value might not correspond to a simple fraction, but we'll scrutinize the possibilities.

The sine of an angle represents the ratio of the length of the side opposite the angle to the length of the hypotenuse in a right-angled triangle.

We have the following options:
A. [tex]\(\frac{8}{15}\)[/tex]
B. [tex]\(\frac{15}{8}\)[/tex]
C. [tex]\(\frac{8}{17}\)[/tex]
D. [tex]\(\frac{15}{17}\)[/tex]

Our task is to determine the correct value that approximates [tex]\(\sin 28^{\circ}\)[/tex].

Given the result:
[tex]\[ \sin 28^{\circ} \approx 0.4694715627858908 \][/tex]

Let’s evaluate the given options as decimal approximations:

A. [tex]\(\frac{8}{15} \approx 0.5333333\)[/tex]
B. [tex]\(\frac{15}{8} \approx 1.875\)[/tex]
C. [tex]\(\frac{8}{17} \approx 0.4705882\)[/tex]
D. [tex]\(\frac{15}{17} \approx 0.8823529\)[/tex]

Comparing these approximate values with [tex]\(0.4694715627858908\)[/tex]:

- [tex]\(\frac{8}{15} \approx 0.5333333\)[/tex]
- [tex]\(\frac{15}{8} \approx 1.875\)[/tex]
- [tex]\(\frac{8}{17} \approx 0.4705882\)[/tex]
- [tex]\(\frac{15}{17} \approx 0.8823529\)[/tex]

We see that [tex]\(\frac{8}{17}\)[/tex] is the closest approximation to the value [tex]\(0.4694715627858908\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{8}{17}} \][/tex]