Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's find the inverse of the given matrices using the Gauss-Jordan method, which involves row operations to transform the given matrix into an identity matrix while simultaneously transforming an identity matrix into the inverse of the given matrix.
### a. Finding the inverse of [tex]\( \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right) \)[/tex]
1. Augment the given matrix with the identity matrix:
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \\ \end{array}\right) \][/tex]
2. Pivot on the first element (1,1):
- The pivot element is already 1, so no changes needed in the first row.
- Make the element below the pivot (2) into 0 by subtracting 2 times the first row from the second row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ \end{array}\right) \][/tex]
3. Pivot on the second element (2,2):
- Now the element at (2,2) is already 1.
- Make the element above the pivot (2) into 0 by subtracting 2 times the second row from the first row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \\ \end{array}\right) \][/tex]
4. Read off the inverse matrix from the augmented matrix:
[tex]\[ \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \][/tex]
So, the inverse of the matrix [tex]\( \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right) \)[/tex] is [tex]\( \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \)[/tex].
### b. Finding the inverse of [tex]\( \left(\begin{array}{cc} -3 & -5 \\ 6 & 8 \end{array}\right) \)[/tex]
1. Augment the given matrix with the identity matrix:
[tex]\[ \left( \begin{array}{cc|cc} -3 & -5 & 1 & 0 \\ 6 & 8 & 0 & 1 \\ \end{array}\right) \][/tex]
2. Pivot on the first element (1,1):
- Multiply the first row by [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 6 & 8 & 0 & 1 \\ \end{array}\right) \][/tex]
- Make the element below the pivot (6) into 0 by subtracting 6 times the first row from the second row:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & -2 & 2 & 1 \\ \end{array}\right) \][/tex]
3. Pivot on the second element (2,2):
- Multiply the second row by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ \left( \begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1 & -\frac{1}{2} \\ \end{array}\right) \][/tex]
- Make the element above the pivot ([tex]\(\frac{5}{3}\)[/tex]) into 0 by subtracting [tex]\(\frac{5}{3}\)[/tex] times the second row from the first row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 0 & \frac{4}{3} & \frac{5}{6} \\ 0 & 1 & -1 & -\frac{1}{2} \\ \end{array}\right) \][/tex]
4. Read off the inverse matrix from the augmented matrix:
[tex]\[ \left( \begin{array}{cc} \frac{4}{3} & \frac{5}{6} \\ -1 & -\frac{1}{2} \end{array}\right) \][/tex]
Converting to decimals for clarity:
[tex]\[ \left( \begin{array}{cc} 1.3333333333333333 & 0.8333333333333333 \\ -1 & -0.5 \end{array}\right) \][/tex]
So the inverse of the matrix [tex]\( \left(\begin{array}{cc} -3 & -5 \\ 6 & 8 \end{array}\right) \)[/tex] is [tex]\( \left(\begin{array}{cc} 1.3333333333333333 & 0.8333333333333333 \\ -1 & -0.5 \end{array}\right) \)[/tex].
### a. Finding the inverse of [tex]\( \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right) \)[/tex]
1. Augment the given matrix with the identity matrix:
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \\ \end{array}\right) \][/tex]
2. Pivot on the first element (1,1):
- The pivot element is already 1, so no changes needed in the first row.
- Make the element below the pivot (2) into 0 by subtracting 2 times the first row from the second row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ \end{array}\right) \][/tex]
3. Pivot on the second element (2,2):
- Now the element at (2,2) is already 1.
- Make the element above the pivot (2) into 0 by subtracting 2 times the second row from the first row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \\ \end{array}\right) \][/tex]
4. Read off the inverse matrix from the augmented matrix:
[tex]\[ \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \][/tex]
So, the inverse of the matrix [tex]\( \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right) \)[/tex] is [tex]\( \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \)[/tex].
### b. Finding the inverse of [tex]\( \left(\begin{array}{cc} -3 & -5 \\ 6 & 8 \end{array}\right) \)[/tex]
1. Augment the given matrix with the identity matrix:
[tex]\[ \left( \begin{array}{cc|cc} -3 & -5 & 1 & 0 \\ 6 & 8 & 0 & 1 \\ \end{array}\right) \][/tex]
2. Pivot on the first element (1,1):
- Multiply the first row by [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 6 & 8 & 0 & 1 \\ \end{array}\right) \][/tex]
- Make the element below the pivot (6) into 0 by subtracting 6 times the first row from the second row:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & -2 & 2 & 1 \\ \end{array}\right) \][/tex]
3. Pivot on the second element (2,2):
- Multiply the second row by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ \left( \begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1 & -\frac{1}{2} \\ \end{array}\right) \][/tex]
- Make the element above the pivot ([tex]\(\frac{5}{3}\)[/tex]) into 0 by subtracting [tex]\(\frac{5}{3}\)[/tex] times the second row from the first row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 0 & \frac{4}{3} & \frac{5}{6} \\ 0 & 1 & -1 & -\frac{1}{2} \\ \end{array}\right) \][/tex]
4. Read off the inverse matrix from the augmented matrix:
[tex]\[ \left( \begin{array}{cc} \frac{4}{3} & \frac{5}{6} \\ -1 & -\frac{1}{2} \end{array}\right) \][/tex]
Converting to decimals for clarity:
[tex]\[ \left( \begin{array}{cc} 1.3333333333333333 & 0.8333333333333333 \\ -1 & -0.5 \end{array}\right) \][/tex]
So the inverse of the matrix [tex]\( \left(\begin{array}{cc} -3 & -5 \\ 6 & 8 \end{array}\right) \)[/tex] is [tex]\( \left(\begin{array}{cc} 1.3333333333333333 & 0.8333333333333333 \\ -1 & -0.5 \end{array}\right) \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.