Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's find the inverse of the given matrices using the Gauss-Jordan method, which involves row operations to transform the given matrix into an identity matrix while simultaneously transforming an identity matrix into the inverse of the given matrix.
### a. Finding the inverse of [tex]\( \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right) \)[/tex]
1. Augment the given matrix with the identity matrix:
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \\ \end{array}\right) \][/tex]
2. Pivot on the first element (1,1):
- The pivot element is already 1, so no changes needed in the first row.
- Make the element below the pivot (2) into 0 by subtracting 2 times the first row from the second row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ \end{array}\right) \][/tex]
3. Pivot on the second element (2,2):
- Now the element at (2,2) is already 1.
- Make the element above the pivot (2) into 0 by subtracting 2 times the second row from the first row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \\ \end{array}\right) \][/tex]
4. Read off the inverse matrix from the augmented matrix:
[tex]\[ \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \][/tex]
So, the inverse of the matrix [tex]\( \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right) \)[/tex] is [tex]\( \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \)[/tex].
### b. Finding the inverse of [tex]\( \left(\begin{array}{cc} -3 & -5 \\ 6 & 8 \end{array}\right) \)[/tex]
1. Augment the given matrix with the identity matrix:
[tex]\[ \left( \begin{array}{cc|cc} -3 & -5 & 1 & 0 \\ 6 & 8 & 0 & 1 \\ \end{array}\right) \][/tex]
2. Pivot on the first element (1,1):
- Multiply the first row by [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 6 & 8 & 0 & 1 \\ \end{array}\right) \][/tex]
- Make the element below the pivot (6) into 0 by subtracting 6 times the first row from the second row:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & -2 & 2 & 1 \\ \end{array}\right) \][/tex]
3. Pivot on the second element (2,2):
- Multiply the second row by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ \left( \begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1 & -\frac{1}{2} \\ \end{array}\right) \][/tex]
- Make the element above the pivot ([tex]\(\frac{5}{3}\)[/tex]) into 0 by subtracting [tex]\(\frac{5}{3}\)[/tex] times the second row from the first row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 0 & \frac{4}{3} & \frac{5}{6} \\ 0 & 1 & -1 & -\frac{1}{2} \\ \end{array}\right) \][/tex]
4. Read off the inverse matrix from the augmented matrix:
[tex]\[ \left( \begin{array}{cc} \frac{4}{3} & \frac{5}{6} \\ -1 & -\frac{1}{2} \end{array}\right) \][/tex]
Converting to decimals for clarity:
[tex]\[ \left( \begin{array}{cc} 1.3333333333333333 & 0.8333333333333333 \\ -1 & -0.5 \end{array}\right) \][/tex]
So the inverse of the matrix [tex]\( \left(\begin{array}{cc} -3 & -5 \\ 6 & 8 \end{array}\right) \)[/tex] is [tex]\( \left(\begin{array}{cc} 1.3333333333333333 & 0.8333333333333333 \\ -1 & -0.5 \end{array}\right) \)[/tex].
### a. Finding the inverse of [tex]\( \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right) \)[/tex]
1. Augment the given matrix with the identity matrix:
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \\ \end{array}\right) \][/tex]
2. Pivot on the first element (1,1):
- The pivot element is already 1, so no changes needed in the first row.
- Make the element below the pivot (2) into 0 by subtracting 2 times the first row from the second row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ \end{array}\right) \][/tex]
3. Pivot on the second element (2,2):
- Now the element at (2,2) is already 1.
- Make the element above the pivot (2) into 0 by subtracting 2 times the second row from the first row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \\ \end{array}\right) \][/tex]
4. Read off the inverse matrix from the augmented matrix:
[tex]\[ \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \][/tex]
So, the inverse of the matrix [tex]\( \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right) \)[/tex] is [tex]\( \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right) \)[/tex].
### b. Finding the inverse of [tex]\( \left(\begin{array}{cc} -3 & -5 \\ 6 & 8 \end{array}\right) \)[/tex]
1. Augment the given matrix with the identity matrix:
[tex]\[ \left( \begin{array}{cc|cc} -3 & -5 & 1 & 0 \\ 6 & 8 & 0 & 1 \\ \end{array}\right) \][/tex]
2. Pivot on the first element (1,1):
- Multiply the first row by [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 6 & 8 & 0 & 1 \\ \end{array}\right) \][/tex]
- Make the element below the pivot (6) into 0 by subtracting 6 times the first row from the second row:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & -2 & 2 & 1 \\ \end{array}\right) \][/tex]
3. Pivot on the second element (2,2):
- Multiply the second row by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ \left( \begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1 & -\frac{1}{2} \\ \end{array}\right) \][/tex]
- Make the element above the pivot ([tex]\(\frac{5}{3}\)[/tex]) into 0 by subtracting [tex]\(\frac{5}{3}\)[/tex] times the second row from the first row:
[tex]\[ \left( \begin{array}{cc|cc} 1 & 0 & \frac{4}{3} & \frac{5}{6} \\ 0 & 1 & -1 & -\frac{1}{2} \\ \end{array}\right) \][/tex]
4. Read off the inverse matrix from the augmented matrix:
[tex]\[ \left( \begin{array}{cc} \frac{4}{3} & \frac{5}{6} \\ -1 & -\frac{1}{2} \end{array}\right) \][/tex]
Converting to decimals for clarity:
[tex]\[ \left( \begin{array}{cc} 1.3333333333333333 & 0.8333333333333333 \\ -1 & -0.5 \end{array}\right) \][/tex]
So the inverse of the matrix [tex]\( \left(\begin{array}{cc} -3 & -5 \\ 6 & 8 \end{array}\right) \)[/tex] is [tex]\( \left(\begin{array}{cc} 1.3333333333333333 & 0.8333333333333333 \\ -1 & -0.5 \end{array}\right) \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.