Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Simplify [tex]\frac{3}{4} x^{1 / 2} \div \frac{1}{2} x^{-1 / 4}[/tex]

Sagot :

To simplify the expression [tex]\(\frac{3}{4} x^{1/2} \div \frac{1}{2} x^{-1/4}\)[/tex], we will follow these steps:

1. Rewrite the division as multiplication by the reciprocal:
[tex]\[ \frac{3}{4} x^{1/2} \div \frac{1}{2} x^{-1/4} = \frac{3}{4} x^{1/2} \times \frac{2}{1} x^{1/4} \][/tex]

2. Simplify the constant coefficients:
[tex]\[ \frac{3}{4} \times \frac{2}{1} = \frac{3 \cdot 2}{4 \cdot 1} = \frac{6}{4} = \frac{3}{2} \][/tex]

3. Combine the exponents using the properties of exponents:
[tex]\[ x^{1/2} \times x^{-1/4} = x^{1/2 + (-1/4)} = x^{1/2 - 1/4} \][/tex]

4. Simplify the exponent:
[tex]\[ 1/2 - 1/4 = \frac{2}{4} - \frac{1}{4} = \frac{1}{4} \][/tex]
So,
[tex]\[ x^{1/2 - 1/4} = x^{1/4} \][/tex]

Combining the simplified constant and the simplified variable, the final, simplified expression is:
[tex]\[ \frac{3}{2} x^{1/4} \][/tex]