Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the focal length of a converging lens when an object is placed at a certain distance from the lens and a real image is formed at another distance, we use the lens formula:
[tex]\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \][/tex]
where:
- [tex]\( f \)[/tex] is the focal length of the lens,
- [tex]\( v \)[/tex] is the distance of the image from the lens,
- [tex]\( u \)[/tex] is the distance of the object from the lens.
Given:
- The object distance [tex]\( u \)[/tex] is 30.0 cm,
- The image distance [tex]\( v \)[/tex] is 90.0 cm.
Step-by-step solution:
1. Convert the given distances into their respective reciprocals for the lens formula.
[tex]\[ \frac{1}{u} = \frac{1}{30.0} \][/tex]
[tex]\[ \frac{1}{v} = \frac{1}{90.0} \][/tex]
2. Add these reciprocals according to the lens formula.
[tex]\[ \frac{1}{f} = \frac{1}{90.0} + \frac{1}{30.0} \][/tex]
3. Now, compute:
[tex]\[ \frac{1}{f} = \frac{1}{90.0} + \frac{1}{30.0} = 0.011111111111111112 + 0.03333333333333333 \][/tex]
[tex]\[ \frac{1}{f} = 0.044444444444444446 \][/tex]
4. To find the focal length [tex]\( f \)[/tex], take the reciprocal of the sum.
[tex]\[ f = \frac{1}{0.044444444444444446} \][/tex]
5. Calculate the reciprocal:
[tex]\[ f = 22.5 \text{ cm} \][/tex]
Hence, the focal length of the converging lens is [tex]\( 22.5 \)[/tex] cm.
[tex]\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \][/tex]
where:
- [tex]\( f \)[/tex] is the focal length of the lens,
- [tex]\( v \)[/tex] is the distance of the image from the lens,
- [tex]\( u \)[/tex] is the distance of the object from the lens.
Given:
- The object distance [tex]\( u \)[/tex] is 30.0 cm,
- The image distance [tex]\( v \)[/tex] is 90.0 cm.
Step-by-step solution:
1. Convert the given distances into their respective reciprocals for the lens formula.
[tex]\[ \frac{1}{u} = \frac{1}{30.0} \][/tex]
[tex]\[ \frac{1}{v} = \frac{1}{90.0} \][/tex]
2. Add these reciprocals according to the lens formula.
[tex]\[ \frac{1}{f} = \frac{1}{90.0} + \frac{1}{30.0} \][/tex]
3. Now, compute:
[tex]\[ \frac{1}{f} = \frac{1}{90.0} + \frac{1}{30.0} = 0.011111111111111112 + 0.03333333333333333 \][/tex]
[tex]\[ \frac{1}{f} = 0.044444444444444446 \][/tex]
4. To find the focal length [tex]\( f \)[/tex], take the reciprocal of the sum.
[tex]\[ f = \frac{1}{0.044444444444444446} \][/tex]
5. Calculate the reciprocal:
[tex]\[ f = 22.5 \text{ cm} \][/tex]
Hence, the focal length of the converging lens is [tex]\( 22.5 \)[/tex] cm.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.