Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the inverse of a matrix using the Gauss-Jordan method (also known as row-reduction), we can follow these steps:
1. Form the augmented matrix [A | I], where A is the original matrix and I is the identity matrix of the same size.
2. Perform row operations to transform the matrix A into the identity matrix I.
3. The resulting matrix on the right-hand side of the augmented matrix will be the inverse [tex]\( A^{-1} \)[/tex].
Let's perform the Gauss-Jordan method on each of the given matrices.
### Part (a)
Matrix [tex]\( \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \)[/tex]:
1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \end{array}\right) \][/tex]
2. Perform row operations:
- Row 2: [tex]\(R_2 \rightarrow R_2 - 2R_1 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{array}\right) \][/tex]
- Row 1: [tex]\(R_1 \rightarrow R_1 - 2R_2 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \end{array}\right) \][/tex]
3. The inverse is:
[tex]\[ \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} \][/tex]
### Part (b)
Matrix [tex]\( \begin{pmatrix} -3 & -5 \\ 6 & 8 \end{pmatrix} \)[/tex]:
1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{cc|cc} -3 & -5 & 1 & 0 \\ 6 & 8 & 0 & 1 \end{array}\right) \][/tex]
2. Perform row operations:
- Row 1: [tex]\(R_1 \rightarrow -\frac{1}{3} R_1\)[/tex]:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 6 & 8 & 0 & 1 \end{array}\right) \][/tex]
- Row 2: [tex]\(R_2 \rightarrow R_2 - 6R_1 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & -2 & 2 & 1 \end{array}\right) \][/tex]
- Row 2: [tex]\(R_2 \rightarrow -\frac{1}{2} R_2\)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1 & -\frac{1}{2} \end{array}\right) \][/tex]
- Row 1: [tex]\(R_1 \rightarrow R_1 - \frac{5}{3}R_2 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 0 & \frac{4}{3} & \frac{5}{6} \\ 0 & 1 & -1 & -\frac{1}{2} \end{array}\right) \][/tex]
3. The inverse is:
[tex]\[ \begin{pmatrix} \frac{4}{3} & \frac{5}{6} \\ -1 & -\frac{1}{2} \end{pmatrix} \][/tex]
### Part (c)
Matrix [tex]\( \begin{pmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{pmatrix} \)[/tex]:
1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & -2 & 3 & 1 & 0 & 0 \\ 0 & -1 & 4 & 0 & 1 & 0 \\ -2 & 2 & 1 & 0 & 0 & 1 \end{array}\right) \][/tex]
2. Perform row operations to transform the left matrix to identity:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & -9 & 8 & -5 \\ 0 & 1 & 0 & -8 & 7 & -4 \\ 0 & 0 & 1 & -2 & 2 & -1 \end{array}\right) \][/tex]
3. The inverse is:
[tex]\[ \begin{pmatrix} -9 & 8 & -5 \\ -8 & 7 & -4 \\ -2 & 2 & -1 \end{pmatrix} \][/tex]
### Part (d)
Matrix [tex]\( \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 3 \\ 2 & 3 & 4 \end{pmatrix} \)[/tex]:
1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{ccc|ccc} 3 & 2 & 6 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 & 1 & 0 \\ 2 & 3 & 4 & 0 & 0 & 1 \end{array}\right) \][/tex]
2. Perform row operations to transform the left matrix to identity:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 0 & -\frac{2}{5} & 0 & \frac{3}{5} \\ 0 & 0 & 1 & -\frac{1}{5} & 1 & -\frac{1}{5} \end{array}\right) \][/tex]
3. The inverse is:
[tex]\[ \begin{pmatrix} 1 & -2 & 0 \\ -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & 1 & -\frac{1}{5} \end{pmatrix} \][/tex]
These are the inverses of the provided matrices using the Gauss-Jordan method.
1. Form the augmented matrix [A | I], where A is the original matrix and I is the identity matrix of the same size.
2. Perform row operations to transform the matrix A into the identity matrix I.
3. The resulting matrix on the right-hand side of the augmented matrix will be the inverse [tex]\( A^{-1} \)[/tex].
Let's perform the Gauss-Jordan method on each of the given matrices.
### Part (a)
Matrix [tex]\( \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \)[/tex]:
1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \end{array}\right) \][/tex]
2. Perform row operations:
- Row 2: [tex]\(R_2 \rightarrow R_2 - 2R_1 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{array}\right) \][/tex]
- Row 1: [tex]\(R_1 \rightarrow R_1 - 2R_2 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \end{array}\right) \][/tex]
3. The inverse is:
[tex]\[ \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} \][/tex]
### Part (b)
Matrix [tex]\( \begin{pmatrix} -3 & -5 \\ 6 & 8 \end{pmatrix} \)[/tex]:
1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{cc|cc} -3 & -5 & 1 & 0 \\ 6 & 8 & 0 & 1 \end{array}\right) \][/tex]
2. Perform row operations:
- Row 1: [tex]\(R_1 \rightarrow -\frac{1}{3} R_1\)[/tex]:
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 6 & 8 & 0 & 1 \end{array}\right) \][/tex]
- Row 2: [tex]\(R_2 \rightarrow R_2 - 6R_1 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & -2 & 2 & 1 \end{array}\right) \][/tex]
- Row 2: [tex]\(R_2 \rightarrow -\frac{1}{2} R_2\)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & \frac{5}{3} & -\frac{1}{3} & 0 \\ 0 & 1 & -1 & -\frac{1}{2} \end{array}\right) \][/tex]
- Row 1: [tex]\(R_1 \rightarrow R_1 - \frac{5}{3}R_2 \)[/tex]
[tex]\[ \left(\begin{array}{cc|cc} 1 & 0 & \frac{4}{3} & \frac{5}{6} \\ 0 & 1 & -1 & -\frac{1}{2} \end{array}\right) \][/tex]
3. The inverse is:
[tex]\[ \begin{pmatrix} \frac{4}{3} & \frac{5}{6} \\ -1 & -\frac{1}{2} \end{pmatrix} \][/tex]
### Part (c)
Matrix [tex]\( \begin{pmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{pmatrix} \)[/tex]:
1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & -2 & 3 & 1 & 0 & 0 \\ 0 & -1 & 4 & 0 & 1 & 0 \\ -2 & 2 & 1 & 0 & 0 & 1 \end{array}\right) \][/tex]
2. Perform row operations to transform the left matrix to identity:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & -9 & 8 & -5 \\ 0 & 1 & 0 & -8 & 7 & -4 \\ 0 & 0 & 1 & -2 & 2 & -1 \end{array}\right) \][/tex]
3. The inverse is:
[tex]\[ \begin{pmatrix} -9 & 8 & -5 \\ -8 & 7 & -4 \\ -2 & 2 & -1 \end{pmatrix} \][/tex]
### Part (d)
Matrix [tex]\( \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 3 \\ 2 & 3 & 4 \end{pmatrix} \)[/tex]:
1. Set up the augmented matrix:
[tex]\[ \left(\begin{array}{ccc|ccc} 3 & 2 & 6 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 & 1 & 0 \\ 2 & 3 & 4 & 0 & 0 & 1 \end{array}\right) \][/tex]
2. Perform row operations to transform the left matrix to identity:
[tex]\[ \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 0 & -\frac{2}{5} & 0 & \frac{3}{5} \\ 0 & 0 & 1 & -\frac{1}{5} & 1 & -\frac{1}{5} \end{array}\right) \][/tex]
3. The inverse is:
[tex]\[ \begin{pmatrix} 1 & -2 & 0 \\ -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & 1 & -\frac{1}{5} \end{pmatrix} \][/tex]
These are the inverses of the provided matrices using the Gauss-Jordan method.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.