Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To evaluate the given logarithms, we will use the change of base formula:
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.