Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To evaluate the given logarithms, we will use the change of base formula:
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.