Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To evaluate the given logarithms, we will use the change of base formula:
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
[tex]\[ \log_a x = \frac{\log_b x}{\log_b a} \][/tex]
where [tex]\( \log_b \)[/tex] denotes the logarithm with base [tex]\( b \)[/tex]. We will use the natural logarithm (base [tex]\( e \)[/tex]) for convenience.
### 1. Evaluating [tex]\( \log_3 6 \)[/tex]:
Using the change of base formula, we get:
[tex]\[ \log_3 6 = \frac{\log 6}{\log 3} \][/tex]
Note that [tex]\( \log \)[/tex] denotes the natural logarithm here.
The result of calculating [tex]\( \log_3 6 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_3 6 \approx 1.631 \][/tex]
### 2. Evaluating [tex]\( \log_5 20 \)[/tex]:
Similarly, using the change of base formula, we get:
[tex]\[ \log_5 20 = \frac{\log 20}{\log 5} \][/tex]
The result of calculating [tex]\( \log_5 20 \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_5 20 \approx 1.861 \][/tex]
### 3. Evaluating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex]:
Again, using the change of base formula, we have:
[tex]\[ \log_2 \left( \frac{1}{5} \right) = \frac{\log \left( \frac{1}{5} \right)}{\log 2} \][/tex]
Since [tex]\( \frac{1}{5} \)[/tex] is a fraction, its logarithm is negative. The result of calculating [tex]\( \log_2 \left( \frac{1}{5} \right) \)[/tex] rounded to the nearest thousandth is:
[tex]\[ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \][/tex]
Summarizing, the evaluated logarithms are:
[tex]\[ \begin{array}{l} \log_3 6 \approx 1.631 \\ \log_5 20 \approx 1.861 \\ \log_2 \left( \frac{1}{5} \right) \approx -2.322 \end{array} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.