Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the steps to simplifying the product [tex]\((2x^3)^3\)[/tex] and provide the justifications for each step methodically:
Step 1: [tex]\((2 x^3)^3 = 2 x^3 \cdot 2 x^3 \cdot 2 x^3\)[/tex]
Justification: Apply the Power of a Product Property, which states that [tex]\((ab)^n = a^n \cdot b^n\)[/tex]. Here, we are essentially expressing the product as a repeated multiplication.
Step 2: [tex]\(2 x^3 \cdot 2 x^3 \cdot 2 x^3 = 2 \cdot 2 \cdot 2 \cdot x^3 \cdot x^3 \cdot x^3\)[/tex]
Justification: Simplify each term separately. We separate the coefficients and the variables to handle them independently.
Step 3: [tex]\(2 \cdot 2 \cdot 2 \cdot x^3 \cdot x^3 \cdot x^3 = (2 \cdot 2 \cdot 2) \cdot (x^3 \cdot x^3 \cdot x^3)\)[/tex]
Justification: Rearrange and group like terms. Group all coefficients together and all the variables together to prepare for further simplification.
Step 4: [tex]\((2 \cdot 2 \cdot 2) \cdot (x^3 \cdot x^3 \cdot x^3) = 8 x^9\)[/tex]
Justification: Multiply the exponents together. Simplify the numerical coefficients [tex]\(2 \cdot 2 \cdot 2 = 8\)[/tex] and apply the property of powers [tex]\((x^a \cdot x^b \cdot x^c = x^{a+b+c})\)[/tex] to get [tex]\(x^{3+3+3} = x^9\)[/tex].
Summarizing, the justifications for each step are:
- Apply the Power of a Product Property.
- Simplify each term separately.
- Rearrange and group like terms.
- Multiply the exponents together.
Through these steps and justifications, we have simplified [tex]\((2 x^3)^3\)[/tex] to [tex]\(8 x^9\)[/tex].
Step 1: [tex]\((2 x^3)^3 = 2 x^3 \cdot 2 x^3 \cdot 2 x^3\)[/tex]
Justification: Apply the Power of a Product Property, which states that [tex]\((ab)^n = a^n \cdot b^n\)[/tex]. Here, we are essentially expressing the product as a repeated multiplication.
Step 2: [tex]\(2 x^3 \cdot 2 x^3 \cdot 2 x^3 = 2 \cdot 2 \cdot 2 \cdot x^3 \cdot x^3 \cdot x^3\)[/tex]
Justification: Simplify each term separately. We separate the coefficients and the variables to handle them independently.
Step 3: [tex]\(2 \cdot 2 \cdot 2 \cdot x^3 \cdot x^3 \cdot x^3 = (2 \cdot 2 \cdot 2) \cdot (x^3 \cdot x^3 \cdot x^3)\)[/tex]
Justification: Rearrange and group like terms. Group all coefficients together and all the variables together to prepare for further simplification.
Step 4: [tex]\((2 \cdot 2 \cdot 2) \cdot (x^3 \cdot x^3 \cdot x^3) = 8 x^9\)[/tex]
Justification: Multiply the exponents together. Simplify the numerical coefficients [tex]\(2 \cdot 2 \cdot 2 = 8\)[/tex] and apply the property of powers [tex]\((x^a \cdot x^b \cdot x^c = x^{a+b+c})\)[/tex] to get [tex]\(x^{3+3+3} = x^9\)[/tex].
Summarizing, the justifications for each step are:
- Apply the Power of a Product Property.
- Simplify each term separately.
- Rearrange and group like terms.
- Multiply the exponents together.
Through these steps and justifications, we have simplified [tex]\((2 x^3)^3\)[/tex] to [tex]\(8 x^9\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.