Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve this problem step-by-step.
To determine the current ages of Raju and Deepar, let us first define their current ages as follows:
- Let [tex]\( R \)[/tex] be Raju's current age.
- Let [tex]\( D \)[/tex] be Deepar's current age.
### Step 1: Creating the Equations from the Problem Statements
We are given two pieces of information about their ages:
1. Three years ago, Raju was twice as old as Deepar:
Three years ago, Raju's age was [tex]\( R - 3 \)[/tex] and Deepar's age was [tex]\( D - 3 \)[/tex]. According to the problem:
[tex]\[ R - 3 = 2(D - 3) \][/tex]
2. Two years later, Raju will be [tex]\(\frac{3}{2}\)[/tex] times as old as Deepar:
Two years later, Raju's age will be [tex]\( R + 2 \)[/tex] and Deepar's age will be [tex]\( D + 2 \)[/tex]. According to the problem:
[tex]\[ R + 2 = \frac{3}{2}(D + 2) \][/tex]
### Step 2: Simplifying the Equations
Let's simplify each of these equations step by step.
For the first equation:
[tex]\[ R - 3 = 2(D - 3) \][/tex]
[tex]\[ R - 3 = 2D - 6 \][/tex]
[tex]\[ R = 2D - 3 \][/tex]
For the second equation:
[tex]\[ R + 2 = \frac{3}{2}(D + 2) \][/tex]
To get rid of the fraction, multiply both sides by 2:
[tex]\[ 2(R + 2) = 3(D + 2) \][/tex]
[tex]\[ 2R + 4 = 3D + 6 \][/tex]
[tex]\[ 2R - 3D = 2 \][/tex]
### Step 3: Solving the System of Equations
Now we have a system of linear equations:
1. [tex]\( R = 2D - 3 \)[/tex]
2. [tex]\( 2R - 3D = 2 \)[/tex]
We will substitute the value of [tex]\( R \)[/tex] from the first equation into the second equation:
[tex]\[ 2(2D - 3) - 3D = 2 \][/tex]
[tex]\[ 4D - 6 - 3D = 2 \][/tex]
[tex]\[ D - 6 = 2 \][/tex]
[tex]\[ D = 8 \][/tex]
Now that we have [tex]\( D = 8 \)[/tex], we can substitute this back into the first equation to find [tex]\( R \)[/tex]:
[tex]\[ R = 2D - 3 \][/tex]
[tex]\[ R = 2(8) - 3 \][/tex]
[tex]\[ R = 16 - 3 \][/tex]
[tex]\[ R = 13 \][/tex]
### Conclusion
The current ages of Raju and Deepar are:
- Raju is 13 years old.
- Deepar is 8 years old.
To determine the current ages of Raju and Deepar, let us first define their current ages as follows:
- Let [tex]\( R \)[/tex] be Raju's current age.
- Let [tex]\( D \)[/tex] be Deepar's current age.
### Step 1: Creating the Equations from the Problem Statements
We are given two pieces of information about their ages:
1. Three years ago, Raju was twice as old as Deepar:
Three years ago, Raju's age was [tex]\( R - 3 \)[/tex] and Deepar's age was [tex]\( D - 3 \)[/tex]. According to the problem:
[tex]\[ R - 3 = 2(D - 3) \][/tex]
2. Two years later, Raju will be [tex]\(\frac{3}{2}\)[/tex] times as old as Deepar:
Two years later, Raju's age will be [tex]\( R + 2 \)[/tex] and Deepar's age will be [tex]\( D + 2 \)[/tex]. According to the problem:
[tex]\[ R + 2 = \frac{3}{2}(D + 2) \][/tex]
### Step 2: Simplifying the Equations
Let's simplify each of these equations step by step.
For the first equation:
[tex]\[ R - 3 = 2(D - 3) \][/tex]
[tex]\[ R - 3 = 2D - 6 \][/tex]
[tex]\[ R = 2D - 3 \][/tex]
For the second equation:
[tex]\[ R + 2 = \frac{3}{2}(D + 2) \][/tex]
To get rid of the fraction, multiply both sides by 2:
[tex]\[ 2(R + 2) = 3(D + 2) \][/tex]
[tex]\[ 2R + 4 = 3D + 6 \][/tex]
[tex]\[ 2R - 3D = 2 \][/tex]
### Step 3: Solving the System of Equations
Now we have a system of linear equations:
1. [tex]\( R = 2D - 3 \)[/tex]
2. [tex]\( 2R - 3D = 2 \)[/tex]
We will substitute the value of [tex]\( R \)[/tex] from the first equation into the second equation:
[tex]\[ 2(2D - 3) - 3D = 2 \][/tex]
[tex]\[ 4D - 6 - 3D = 2 \][/tex]
[tex]\[ D - 6 = 2 \][/tex]
[tex]\[ D = 8 \][/tex]
Now that we have [tex]\( D = 8 \)[/tex], we can substitute this back into the first equation to find [tex]\( R \)[/tex]:
[tex]\[ R = 2D - 3 \][/tex]
[tex]\[ R = 2(8) - 3 \][/tex]
[tex]\[ R = 16 - 3 \][/tex]
[tex]\[ R = 13 \][/tex]
### Conclusion
The current ages of Raju and Deepar are:
- Raju is 13 years old.
- Deepar is 8 years old.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.