Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the type of triangle and the lengths of its sides, we first need to find the distances between the vertices.
1. Finding the length of [tex]\(AB\)[/tex]:
The formula for the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
For points [tex]\(A (-2, 5)\)[/tex] and [tex]\(B (-4, -2)\)[/tex]:
[tex]\[ AB = \sqrt{((-4) - (-2))^2 + ((-2) - 5)^2} = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \approx 7.2801 \][/tex]
2. Finding the length of [tex]\(AC\)[/tex]:
For points [tex]\(A (-2, 5)\)[/tex] and [tex]\(C (3, -4)\)[/tex]:
[tex]\[ AC = \sqrt{((3) - (-2))^2 + ((-4) - 5)^2} = \sqrt{(5)^2 + (-9)^2} = \sqrt{25 + 81} = \sqrt{106} \approx 10.2956 \][/tex]
3. Finding the length of [tex]\(BC\)[/tex]:
For points [tex]\(B (-4, -2)\)[/tex] and [tex]\(C (3, -4)\)[/tex]:
[tex]\[ BC = \sqrt{((3) - (-4))^2 + ((-4) - (-2))^2} = \sqrt{(7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.2801 \][/tex]
Given these lengths:
- Length of [tex]\( AB \approx 7.2801 \)[/tex]
- Length of [tex]\( AC \approx 10.2956 \)[/tex]
- Length of [tex]\( BC \approx 7.2801 \)[/tex]
Next, we determine the type of triangle.
- If all three sides are equal, the triangle is equilateral.
- If exactly two sides are equal, the triangle is isosceles.
- If no sides are equal, the triangle is scalene.
Here, [tex]\( AB \approx 7.2801 \)[/tex] and [tex]\( BC \approx 7.2801 \)[/tex], while [tex]\( AC \approx 10.2956 \)[/tex]. Since two sides are approximately equal, the triangle is isosceles.
Therefore:
- The length of [tex]\(AB\)[/tex] is [tex]\( 7.2801 \)[/tex]
- The length of [tex]\(AC\)[/tex] is [tex]\(10.2956\)[/tex]
- The length of [tex]\(BC\)[/tex] is [tex]\( 7.2801 \)[/tex]
- The triangle is isosceles
1. Finding the length of [tex]\(AB\)[/tex]:
The formula for the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
For points [tex]\(A (-2, 5)\)[/tex] and [tex]\(B (-4, -2)\)[/tex]:
[tex]\[ AB = \sqrt{((-4) - (-2))^2 + ((-2) - 5)^2} = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \approx 7.2801 \][/tex]
2. Finding the length of [tex]\(AC\)[/tex]:
For points [tex]\(A (-2, 5)\)[/tex] and [tex]\(C (3, -4)\)[/tex]:
[tex]\[ AC = \sqrt{((3) - (-2))^2 + ((-4) - 5)^2} = \sqrt{(5)^2 + (-9)^2} = \sqrt{25 + 81} = \sqrt{106} \approx 10.2956 \][/tex]
3. Finding the length of [tex]\(BC\)[/tex]:
For points [tex]\(B (-4, -2)\)[/tex] and [tex]\(C (3, -4)\)[/tex]:
[tex]\[ BC = \sqrt{((3) - (-4))^2 + ((-4) - (-2))^2} = \sqrt{(7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.2801 \][/tex]
Given these lengths:
- Length of [tex]\( AB \approx 7.2801 \)[/tex]
- Length of [tex]\( AC \approx 10.2956 \)[/tex]
- Length of [tex]\( BC \approx 7.2801 \)[/tex]
Next, we determine the type of triangle.
- If all three sides are equal, the triangle is equilateral.
- If exactly two sides are equal, the triangle is isosceles.
- If no sides are equal, the triangle is scalene.
Here, [tex]\( AB \approx 7.2801 \)[/tex] and [tex]\( BC \approx 7.2801 \)[/tex], while [tex]\( AC \approx 10.2956 \)[/tex]. Since two sides are approximately equal, the triangle is isosceles.
Therefore:
- The length of [tex]\(AB\)[/tex] is [tex]\( 7.2801 \)[/tex]
- The length of [tex]\(AC\)[/tex] is [tex]\(10.2956\)[/tex]
- The length of [tex]\(BC\)[/tex] is [tex]\( 7.2801 \)[/tex]
- The triangle is isosceles
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.