Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To complete the third step of Sam's proof for the product property of logarithms, we need to correctly apply the logarithm properties to the expression [tex]\( \log_8 (3^x \cdot b^y) \)[/tex]. Specifically, we should recognize that the logarithm of a product can be expressed as the sum of the logarithms of the individual factors, according to the product property of logarithms:
[tex]\[ \log_b (MN) = \log_b (M) + \log_b (N) \][/tex]
Given the expression in the second step:
[tex]\[ \log_8 (3^x \cdot b^y) \][/tex]
we apply the product property to get:
[tex]\[ \log_8 (3^x \cdot b^y) = \log_8 (3^x) + \log_8 (b^y) \][/tex]
Each term can then be simplified using the power rule of logarithms, which states [tex]\( \log_b (a^c) = c \log_b (a) \)[/tex]:
[tex]\[ \log_8 (3^x) + \log_8 (b^y) = x \log_8 (3) + y \log_8 (b) \][/tex]
Thus, the correct expression and its justification for the third step in Sam's proof are:
[tex]\[ \log_8 (3^x \cdot b^y) = x \log_8 (3) + y \log_8 (b) \][/tex]
But since we are supposed to choose from the given options and our answer should be based on the provided solution:
The closest matching option is:
\!
So it completes the step logically given the choices available.
[tex]\[ \log_b (MN) = \log_b (M) + \log_b (N) \][/tex]
Given the expression in the second step:
[tex]\[ \log_8 (3^x \cdot b^y) \][/tex]
we apply the product property to get:
[tex]\[ \log_8 (3^x \cdot b^y) = \log_8 (3^x) + \log_8 (b^y) \][/tex]
Each term can then be simplified using the power rule of logarithms, which states [tex]\( \log_b (a^c) = c \log_b (a) \)[/tex]:
[tex]\[ \log_8 (3^x) + \log_8 (b^y) = x \log_8 (3) + y \log_8 (b) \][/tex]
Thus, the correct expression and its justification for the third step in Sam's proof are:
[tex]\[ \log_8 (3^x \cdot b^y) = x \log_8 (3) + y \log_8 (b) \][/tex]
But since we are supposed to choose from the given options and our answer should be based on the provided solution:
The closest matching option is:
\!
So it completes the step logically given the choices available.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.