Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To complete the third step of Sam's proof for the product property of logarithms, we need to correctly apply the logarithm properties to the expression [tex]\( \log_8 (3^x \cdot b^y) \)[/tex]. Specifically, we should recognize that the logarithm of a product can be expressed as the sum of the logarithms of the individual factors, according to the product property of logarithms:
[tex]\[ \log_b (MN) = \log_b (M) + \log_b (N) \][/tex]
Given the expression in the second step:
[tex]\[ \log_8 (3^x \cdot b^y) \][/tex]
we apply the product property to get:
[tex]\[ \log_8 (3^x \cdot b^y) = \log_8 (3^x) + \log_8 (b^y) \][/tex]
Each term can then be simplified using the power rule of logarithms, which states [tex]\( \log_b (a^c) = c \log_b (a) \)[/tex]:
[tex]\[ \log_8 (3^x) + \log_8 (b^y) = x \log_8 (3) + y \log_8 (b) \][/tex]
Thus, the correct expression and its justification for the third step in Sam's proof are:
[tex]\[ \log_8 (3^x \cdot b^y) = x \log_8 (3) + y \log_8 (b) \][/tex]
But since we are supposed to choose from the given options and our answer should be based on the provided solution:
The closest matching option is:
\!
So it completes the step logically given the choices available.
[tex]\[ \log_b (MN) = \log_b (M) + \log_b (N) \][/tex]
Given the expression in the second step:
[tex]\[ \log_8 (3^x \cdot b^y) \][/tex]
we apply the product property to get:
[tex]\[ \log_8 (3^x \cdot b^y) = \log_8 (3^x) + \log_8 (b^y) \][/tex]
Each term can then be simplified using the power rule of logarithms, which states [tex]\( \log_b (a^c) = c \log_b (a) \)[/tex]:
[tex]\[ \log_8 (3^x) + \log_8 (b^y) = x \log_8 (3) + y \log_8 (b) \][/tex]
Thus, the correct expression and its justification for the third step in Sam's proof are:
[tex]\[ \log_8 (3^x \cdot b^y) = x \log_8 (3) + y \log_8 (b) \][/tex]
But since we are supposed to choose from the given options and our answer should be based on the provided solution:
The closest matching option is:
\!
So it completes the step logically given the choices available.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.