At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solve the following elementary exponential equation:

[tex]\[3^{-x} = 9\][/tex]

Answer:

[tex]\[x = \][/tex]


Sagot :

To solve the equation [tex]\( 3^{-x} = 9 \)[/tex], follow these steps:

1. Recognize the Bases:
The number 9 can be rewritten as a power of 3. Since [tex]\( 9 = 3^2 \)[/tex], we can replace 9 in the equation with [tex]\( 3^2 \)[/tex].

So the equation becomes:
[tex]\[ 3^{-x} = 3^2 \][/tex]

2. Set the Exponents Equal to Each Other:
Since the bases are the same (both are 3), we can set the exponents equal to each other. This gives us a simpler linear equation to solve:

[tex]\[ -x = 2 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
To solve for [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex] by multiplying both sides of the equation by -1:

[tex]\[ x = -2 \][/tex]

Thus, the solution to the equation [tex]\( 3^{-x} = 9 \)[/tex] is:

[tex]\[ x = -2 \][/tex]