At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\( \log_6(4x^2) - \log_6(x) = 2 \)[/tex], we will follow these steps:
1. Use Properties of Logarithms:
The properties of logarithms tell us that [tex]\(\log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right)\)[/tex]. Applying this property, we get:
[tex]\[ \log_6\left(\frac{4x^2}{x}\right) = \log_6(4x) = 2 \][/tex]
2. Rewriting the Equation:
Now, we have a simpler logarithmic equation to work with:
[tex]\[ \log_6(4x) = 2 \][/tex]
3. Convert Logarithmic Form to Exponential Form:
Recall that [tex]\( \log_b(a) = c \)[/tex] implies that [tex]\( b^c = a \)[/tex]. Using this, we convert the logarithmic equation to its exponential form:
[tex]\[ 6^2 = 4x \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Calculate [tex]\( 6^2 \)[/tex]:
[tex]\[ 36 = 4x \][/tex]
Now, solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{36}{4} = 9 \][/tex]
So, the solution to the equation [tex]\( \log_6(4x^2) - \log_6(x) = 2 \)[/tex] is [tex]\( x = 9 \)[/tex].
Among the given options:
- [tex]\( x = \frac{1}{12} \)[/tex]
- [tex]\( x = \frac{3}{2} \)[/tex]
- [tex]\( x = 3 \)[/tex]
- [tex]\( x = 9 \)[/tex]
The correct solution is [tex]\( x = 9 \)[/tex].
1. Use Properties of Logarithms:
The properties of logarithms tell us that [tex]\(\log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right)\)[/tex]. Applying this property, we get:
[tex]\[ \log_6\left(\frac{4x^2}{x}\right) = \log_6(4x) = 2 \][/tex]
2. Rewriting the Equation:
Now, we have a simpler logarithmic equation to work with:
[tex]\[ \log_6(4x) = 2 \][/tex]
3. Convert Logarithmic Form to Exponential Form:
Recall that [tex]\( \log_b(a) = c \)[/tex] implies that [tex]\( b^c = a \)[/tex]. Using this, we convert the logarithmic equation to its exponential form:
[tex]\[ 6^2 = 4x \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Calculate [tex]\( 6^2 \)[/tex]:
[tex]\[ 36 = 4x \][/tex]
Now, solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{36}{4} = 9 \][/tex]
So, the solution to the equation [tex]\( \log_6(4x^2) - \log_6(x) = 2 \)[/tex] is [tex]\( x = 9 \)[/tex].
Among the given options:
- [tex]\( x = \frac{1}{12} \)[/tex]
- [tex]\( x = \frac{3}{2} \)[/tex]
- [tex]\( x = 3 \)[/tex]
- [tex]\( x = 9 \)[/tex]
The correct solution is [tex]\( x = 9 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.