At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's analyze how to solve this system of equations using matrix multiplication. We are given the following system of equations:
[tex]\[ \begin{array}{l} x + y + z = 160 \\ x - 2y - z = -100 \\ 2x + 3y + 2z = 360 \\ \end{array} \][/tex]
This system can be expressed in matrix form as [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \text{and} \quad B = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \][/tex]
Next, let's evaluate each option to find the one that represents the solution.
### Option 1:
[tex]\[ \left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2\end{array}\right] \left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Multiplying the matrix [tex]\( A \)[/tex] by vector [tex]\( B \)[/tex] gives [tex]\(A \mathbf{B}\)[/tex]. This operation uniquely resolves to check if [tex]\( A \mathbf{B} \)[/tex] results in [tex]\( B \)[/tex] which makes the system true. Based on the analysis:
[tex]\[ A \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \][/tex]
Therefore, option 1 provides the correct matrix equation representing the solution.
### Option 2:
[tex]\[ \left[\begin{array}{ccc}0.5 & -0.5 & 0.5 \\ 2 & 0 & -1 \\ 3.5 & 0.5 & 1.5\end{array}\right] \left[\begin{array}{c}360 \\ -100 \\ 160\end{array}\right] \][/tex]
Evaluating this multiplication, it does not result in [tex]\( \mathbf{B} = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \)[/tex].
### Option 3:
[tex]\[ \left[\begin{array}{ccc}-0.5 & 0.5 & 0.5 \\ -2 & 0 & 1 \\ 3.5 & -0.5 & -1.5\end{array}\right] \left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Similarly, evaluating this multiplication does not result in [tex]\( \mathbf{B} \)[/tex].
### Option 4:
[tex]\[ \left[\begin{array}{ccc}-1 & -1 & -1 \\ -1 & 2 & 1 \\ -2 & -3 & -2\end{array}\right] \left[\begin{array}{c}360 \\ -100 \\ 160\end{array}\right] \][/tex]
Likewise, evaluating this multiplication, does not result in [tex]\( \mathbf{B} \)[/tex].
### Conclusion:
The option that satisfies [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex] and correctly represents the solution to the system of equations is:
[tex]\[ \left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2\end{array}\right]\left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Thus, the correct answer is the first option.
[tex]\[ \begin{array}{l} x + y + z = 160 \\ x - 2y - z = -100 \\ 2x + 3y + 2z = 360 \\ \end{array} \][/tex]
This system can be expressed in matrix form as [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \text{and} \quad B = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \][/tex]
Next, let's evaluate each option to find the one that represents the solution.
### Option 1:
[tex]\[ \left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2\end{array}\right] \left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Multiplying the matrix [tex]\( A \)[/tex] by vector [tex]\( B \)[/tex] gives [tex]\(A \mathbf{B}\)[/tex]. This operation uniquely resolves to check if [tex]\( A \mathbf{B} \)[/tex] results in [tex]\( B \)[/tex] which makes the system true. Based on the analysis:
[tex]\[ A \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \][/tex]
Therefore, option 1 provides the correct matrix equation representing the solution.
### Option 2:
[tex]\[ \left[\begin{array}{ccc}0.5 & -0.5 & 0.5 \\ 2 & 0 & -1 \\ 3.5 & 0.5 & 1.5\end{array}\right] \left[\begin{array}{c}360 \\ -100 \\ 160\end{array}\right] \][/tex]
Evaluating this multiplication, it does not result in [tex]\( \mathbf{B} = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \)[/tex].
### Option 3:
[tex]\[ \left[\begin{array}{ccc}-0.5 & 0.5 & 0.5 \\ -2 & 0 & 1 \\ 3.5 & -0.5 & -1.5\end{array}\right] \left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Similarly, evaluating this multiplication does not result in [tex]\( \mathbf{B} \)[/tex].
### Option 4:
[tex]\[ \left[\begin{array}{ccc}-1 & -1 & -1 \\ -1 & 2 & 1 \\ -2 & -3 & -2\end{array}\right] \left[\begin{array}{c}360 \\ -100 \\ 160\end{array}\right] \][/tex]
Likewise, evaluating this multiplication, does not result in [tex]\( \mathbf{B} \)[/tex].
### Conclusion:
The option that satisfies [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex] and correctly represents the solution to the system of equations is:
[tex]\[ \left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2\end{array}\right]\left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Thus, the correct answer is the first option.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.