At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze how to solve this system of equations using matrix multiplication. We are given the following system of equations:
[tex]\[ \begin{array}{l} x + y + z = 160 \\ x - 2y - z = -100 \\ 2x + 3y + 2z = 360 \\ \end{array} \][/tex]
This system can be expressed in matrix form as [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \text{and} \quad B = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \][/tex]
Next, let's evaluate each option to find the one that represents the solution.
### Option 1:
[tex]\[ \left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2\end{array}\right] \left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Multiplying the matrix [tex]\( A \)[/tex] by vector [tex]\( B \)[/tex] gives [tex]\(A \mathbf{B}\)[/tex]. This operation uniquely resolves to check if [tex]\( A \mathbf{B} \)[/tex] results in [tex]\( B \)[/tex] which makes the system true. Based on the analysis:
[tex]\[ A \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \][/tex]
Therefore, option 1 provides the correct matrix equation representing the solution.
### Option 2:
[tex]\[ \left[\begin{array}{ccc}0.5 & -0.5 & 0.5 \\ 2 & 0 & -1 \\ 3.5 & 0.5 & 1.5\end{array}\right] \left[\begin{array}{c}360 \\ -100 \\ 160\end{array}\right] \][/tex]
Evaluating this multiplication, it does not result in [tex]\( \mathbf{B} = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \)[/tex].
### Option 3:
[tex]\[ \left[\begin{array}{ccc}-0.5 & 0.5 & 0.5 \\ -2 & 0 & 1 \\ 3.5 & -0.5 & -1.5\end{array}\right] \left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Similarly, evaluating this multiplication does not result in [tex]\( \mathbf{B} \)[/tex].
### Option 4:
[tex]\[ \left[\begin{array}{ccc}-1 & -1 & -1 \\ -1 & 2 & 1 \\ -2 & -3 & -2\end{array}\right] \left[\begin{array}{c}360 \\ -100 \\ 160\end{array}\right] \][/tex]
Likewise, evaluating this multiplication, does not result in [tex]\( \mathbf{B} \)[/tex].
### Conclusion:
The option that satisfies [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex] and correctly represents the solution to the system of equations is:
[tex]\[ \left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2\end{array}\right]\left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Thus, the correct answer is the first option.
[tex]\[ \begin{array}{l} x + y + z = 160 \\ x - 2y - z = -100 \\ 2x + 3y + 2z = 360 \\ \end{array} \][/tex]
This system can be expressed in matrix form as [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \text{and} \quad B = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \][/tex]
Next, let's evaluate each option to find the one that represents the solution.
### Option 1:
[tex]\[ \left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2\end{array}\right] \left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Multiplying the matrix [tex]\( A \)[/tex] by vector [tex]\( B \)[/tex] gives [tex]\(A \mathbf{B}\)[/tex]. This operation uniquely resolves to check if [tex]\( A \mathbf{B} \)[/tex] results in [tex]\( B \)[/tex] which makes the system true. Based on the analysis:
[tex]\[ A \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \][/tex]
Therefore, option 1 provides the correct matrix equation representing the solution.
### Option 2:
[tex]\[ \left[\begin{array}{ccc}0.5 & -0.5 & 0.5 \\ 2 & 0 & -1 \\ 3.5 & 0.5 & 1.5\end{array}\right] \left[\begin{array}{c}360 \\ -100 \\ 160\end{array}\right] \][/tex]
Evaluating this multiplication, it does not result in [tex]\( \mathbf{B} = \begin{bmatrix} 160 \\ -100 \\ 360 \end{bmatrix} \)[/tex].
### Option 3:
[tex]\[ \left[\begin{array}{ccc}-0.5 & 0.5 & 0.5 \\ -2 & 0 & 1 \\ 3.5 & -0.5 & -1.5\end{array}\right] \left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Similarly, evaluating this multiplication does not result in [tex]\( \mathbf{B} \)[/tex].
### Option 4:
[tex]\[ \left[\begin{array}{ccc}-1 & -1 & -1 \\ -1 & 2 & 1 \\ -2 & -3 & -2\end{array}\right] \left[\begin{array}{c}360 \\ -100 \\ 160\end{array}\right] \][/tex]
Likewise, evaluating this multiplication, does not result in [tex]\( \mathbf{B} \)[/tex].
### Conclusion:
The option that satisfies [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex] and correctly represents the solution to the system of equations is:
[tex]\[ \left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & -1 \\ 2 & 3 & 2\end{array}\right]\left[\begin{array}{c}160 \\ -100 \\ 360\end{array}\right] \][/tex]
Thus, the correct answer is the first option.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.