Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which formula is used to calculate the standard deviation of sample data, let's analyze each given option:
1. [tex]\( s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \)[/tex]
2. [tex]\( a^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N} \)[/tex]
3. [tex]\( \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N}} \)[/tex]
4. [tex]\( s = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \)[/tex]
### Definitions & Symbols:
- [tex]\( s \)[/tex] is the standard deviation of a sample.
- [tex]\( \sigma \)[/tex] is the standard deviation of a population.
- [tex]\( \bar{x} \)[/tex] is the sample mean.
- [tex]\( \mu \)[/tex] is the population mean.
- [tex]\( n \)[/tex] is the sample size.
- [tex]\( N \)[/tex] is the population size.
### Explanation of Each Option:
1. Option 1:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
This is the formula for the standard deviation of a sample. The divisor is [tex]\( n - 1 \)[/tex] which is known as Bessel's correction and it is used to correct the bias in the estimation of the population variance and standard deviation when sample data is used.
2. Option 2:
[tex]\[ a^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N} \][/tex]
This formula computes the population variance ([tex]\( \sigma^2 \)[/tex]), not the standard deviation, and uses the population mean ([tex]\( \mu \)[/tex]) and population size ([tex]\( N \)[/tex]).
3. Option 3:
[tex]\[ \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N}} \][/tex]
This is the formula for the population standard deviation. It uses the population mean ([tex]\( \mu \)[/tex]) and population size ([tex]\( N \)[/tex]).
4. Option 4:
[tex]\[ s = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
This is not a standard deviation formula, but rather an expression for the sample variance without taking the square root.
### Conclusion:
The correct formula to calculate the standard deviation of sample data is:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
Therefore, the correct option is:
[tex]\[ \boxed{1} \][/tex]
1. [tex]\( s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \)[/tex]
2. [tex]\( a^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N} \)[/tex]
3. [tex]\( \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N}} \)[/tex]
4. [tex]\( s = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \)[/tex]
### Definitions & Symbols:
- [tex]\( s \)[/tex] is the standard deviation of a sample.
- [tex]\( \sigma \)[/tex] is the standard deviation of a population.
- [tex]\( \bar{x} \)[/tex] is the sample mean.
- [tex]\( \mu \)[/tex] is the population mean.
- [tex]\( n \)[/tex] is the sample size.
- [tex]\( N \)[/tex] is the population size.
### Explanation of Each Option:
1. Option 1:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
This is the formula for the standard deviation of a sample. The divisor is [tex]\( n - 1 \)[/tex] which is known as Bessel's correction and it is used to correct the bias in the estimation of the population variance and standard deviation when sample data is used.
2. Option 2:
[tex]\[ a^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N} \][/tex]
This formula computes the population variance ([tex]\( \sigma^2 \)[/tex]), not the standard deviation, and uses the population mean ([tex]\( \mu \)[/tex]) and population size ([tex]\( N \)[/tex]).
3. Option 3:
[tex]\[ \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N}} \][/tex]
This is the formula for the population standard deviation. It uses the population mean ([tex]\( \mu \)[/tex]) and population size ([tex]\( N \)[/tex]).
4. Option 4:
[tex]\[ s = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
This is not a standard deviation formula, but rather an expression for the sample variance without taking the square root.
### Conclusion:
The correct formula to calculate the standard deviation of sample data is:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
Therefore, the correct option is:
[tex]\[ \boxed{1} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.