Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which formula is used to calculate the standard deviation of sample data, let's analyze each given option:
1. [tex]\( s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \)[/tex]
2. [tex]\( a^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N} \)[/tex]
3. [tex]\( \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N}} \)[/tex]
4. [tex]\( s = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \)[/tex]
### Definitions & Symbols:
- [tex]\( s \)[/tex] is the standard deviation of a sample.
- [tex]\( \sigma \)[/tex] is the standard deviation of a population.
- [tex]\( \bar{x} \)[/tex] is the sample mean.
- [tex]\( \mu \)[/tex] is the population mean.
- [tex]\( n \)[/tex] is the sample size.
- [tex]\( N \)[/tex] is the population size.
### Explanation of Each Option:
1. Option 1:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
This is the formula for the standard deviation of a sample. The divisor is [tex]\( n - 1 \)[/tex] which is known as Bessel's correction and it is used to correct the bias in the estimation of the population variance and standard deviation when sample data is used.
2. Option 2:
[tex]\[ a^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N} \][/tex]
This formula computes the population variance ([tex]\( \sigma^2 \)[/tex]), not the standard deviation, and uses the population mean ([tex]\( \mu \)[/tex]) and population size ([tex]\( N \)[/tex]).
3. Option 3:
[tex]\[ \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N}} \][/tex]
This is the formula for the population standard deviation. It uses the population mean ([tex]\( \mu \)[/tex]) and population size ([tex]\( N \)[/tex]).
4. Option 4:
[tex]\[ s = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
This is not a standard deviation formula, but rather an expression for the sample variance without taking the square root.
### Conclusion:
The correct formula to calculate the standard deviation of sample data is:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
Therefore, the correct option is:
[tex]\[ \boxed{1} \][/tex]
1. [tex]\( s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \)[/tex]
2. [tex]\( a^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N} \)[/tex]
3. [tex]\( \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N}} \)[/tex]
4. [tex]\( s = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \)[/tex]
### Definitions & Symbols:
- [tex]\( s \)[/tex] is the standard deviation of a sample.
- [tex]\( \sigma \)[/tex] is the standard deviation of a population.
- [tex]\( \bar{x} \)[/tex] is the sample mean.
- [tex]\( \mu \)[/tex] is the population mean.
- [tex]\( n \)[/tex] is the sample size.
- [tex]\( N \)[/tex] is the population size.
### Explanation of Each Option:
1. Option 1:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
This is the formula for the standard deviation of a sample. The divisor is [tex]\( n - 1 \)[/tex] which is known as Bessel's correction and it is used to correct the bias in the estimation of the population variance and standard deviation when sample data is used.
2. Option 2:
[tex]\[ a^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N} \][/tex]
This formula computes the population variance ([tex]\( \sigma^2 \)[/tex]), not the standard deviation, and uses the population mean ([tex]\( \mu \)[/tex]) and population size ([tex]\( N \)[/tex]).
3. Option 3:
[tex]\[ \sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \ldots + (x_N - \mu)^2}{N}} \][/tex]
This is the formula for the population standard deviation. It uses the population mean ([tex]\( \mu \)[/tex]) and population size ([tex]\( N \)[/tex]).
4. Option 4:
[tex]\[ s = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
This is not a standard deviation formula, but rather an expression for the sample variance without taking the square root.
### Conclusion:
The correct formula to calculate the standard deviation of sample data is:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
Therefore, the correct option is:
[tex]\[ \boxed{1} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.