Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To identify the mistake in solving the equation [tex]\(6x - 1 = -2x + 9\)[/tex], let's go through each step methodically and check for correctness and proper justifications:
1. Starting equation:
[tex]\(6x - 1 = -2x + 9\)[/tex]
2. Combining like terms:
Adding [tex]\(2x\)[/tex] to both sides of the equation to combine like terms on one side.
[tex]\[ 6x - 1 + 2x = -2x + 9 + 2x \][/tex]
Simplifies to:
[tex]\[ 8x - 1 = 9 \][/tex]
The justification for this step is the Addition property of equality, which is correctly applied.
3. Removing the constant term from one side:
Adding 1 to both sides to isolate the term involving `x`.
[tex]\[ 8x - 1 + 1 = 9 + 1 \][/tex]
Simplifies to:
[tex]\[ 8x = 10 \][/tex]
The justification for this step is the Addition property of equality, which is correctly applied.
4. Solving for [tex]\(x\)[/tex]:
Dividing both sides by 8 to solve for `x`.
[tex]\[ \frac{8x}{8} = \frac{10}{8} \][/tex]
Simplifies to:
[tex]\[ x = \frac{10}{8} \][/tex]
The justification for this step is the Division property of equality, which is correctly applied.
5. Simplifying the fraction:
Simplifying the fraction:
[tex]\[ x = \frac{10}{8} = \frac{5}{4} \][/tex]
Given the process, we notice an inconsistency in the provided solution steps. In step 4, the simplification results in:
[tex]\[ x = \frac{10}{8} \][/tex]
However, there's a mistake in stating the intermediate result directly as:
[tex]\[ x = \frac{8}{10} \][/tex]
This is incorrect since it should be [tex]\(x = \frac{10}{8}\)[/tex].
Therefore, the correct answer that identifies the mistake is:
C. Step 3 is incorrect and should be [tex]\( x = \frac{10}{8} \)[/tex].
1. Starting equation:
[tex]\(6x - 1 = -2x + 9\)[/tex]
2. Combining like terms:
Adding [tex]\(2x\)[/tex] to both sides of the equation to combine like terms on one side.
[tex]\[ 6x - 1 + 2x = -2x + 9 + 2x \][/tex]
Simplifies to:
[tex]\[ 8x - 1 = 9 \][/tex]
The justification for this step is the Addition property of equality, which is correctly applied.
3. Removing the constant term from one side:
Adding 1 to both sides to isolate the term involving `x`.
[tex]\[ 8x - 1 + 1 = 9 + 1 \][/tex]
Simplifies to:
[tex]\[ 8x = 10 \][/tex]
The justification for this step is the Addition property of equality, which is correctly applied.
4. Solving for [tex]\(x\)[/tex]:
Dividing both sides by 8 to solve for `x`.
[tex]\[ \frac{8x}{8} = \frac{10}{8} \][/tex]
Simplifies to:
[tex]\[ x = \frac{10}{8} \][/tex]
The justification for this step is the Division property of equality, which is correctly applied.
5. Simplifying the fraction:
Simplifying the fraction:
[tex]\[ x = \frac{10}{8} = \frac{5}{4} \][/tex]
Given the process, we notice an inconsistency in the provided solution steps. In step 4, the simplification results in:
[tex]\[ x = \frac{10}{8} \][/tex]
However, there's a mistake in stating the intermediate result directly as:
[tex]\[ x = \frac{8}{10} \][/tex]
This is incorrect since it should be [tex]\(x = \frac{10}{8}\)[/tex].
Therefore, the correct answer that identifies the mistake is:
C. Step 3 is incorrect and should be [tex]\( x = \frac{10}{8} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.