Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the given game step by step to find out the expected values for playing with the 3 pennies and the 2 nickels.
### Step 1: Calculate the Probabilities
#### Probabilities for Pennies:
1. All pennies heads:
- Probability: [tex]\((\frac{1}{2})^3 = \frac{1}{8}\)[/tex].
2. All pennies tails:
- Probability: [tex]\((\frac{1}{2})^3 = \frac{1}{8}\)[/tex].
3. At least one of each (mixed):
- Probability: [tex]\(1 - \left( \frac{1}{8} + \frac{1}{8} \right) = 1 - \frac{2}{8} = \frac{6}{8} = \frac{3}{4}\)[/tex].
#### Probabilities for Nickels:
1. Both nickels heads:
- Probability: [tex]\((\frac{1}{2})^2 = \frac{1}{4}\)[/tex].
2. Both nickels tails:
- Probability: [tex]\((\frac{1}{2})^2 = \frac{1}{4}\)[/tex].
3. One of each (mixed):
- Probability: [tex]\(1 - \left( \frac{1}{4} + \frac{1}{4} \right) = 1 - \frac{2}{4} = \frac{2}{4} = \frac{1}{2}\)[/tex].
### Step 2: Calculate the Expected Points
#### Expected Points for Pennies:
1. All pennies heads: [tex]\(-2\)[/tex] points.
- Contribution: [tex]\(\frac{1}{8} \times -2 = -\frac{2}{8} = -0.25\)[/tex].
2. All pennies tails: [tex]\(-2\)[/tex] points.
- Contribution: [tex]\(\frac{1}{8} \times -2 = -\frac{2}{8} = -0.25\)[/tex].
3. Mixed: [tex]\(+3\)[/tex] points.
- Contribution: [tex]\(\frac{3}{4} \times 3 = \frac{9}{4} = 2.25\)[/tex].
Adding these contributions:
[tex]\[ E(\text{penny}) = -0.25 - 0.25 + 2.25 = 1.75 \][/tex]
#### Expected Points for Nickels:
1. Both nickels heads: [tex]\(-2\)[/tex] points.
- Contribution: [tex]\(\frac{1}{4} \times -2 = -\frac{2}{4} = -0.5\)[/tex].
2. Both nickels tails: [tex]\(-2\)[/tex] points.
- Contribution: [tex]\(\frac{1}{4} \times -2 = -\frac{2}{4} = -0.5\)[/tex].
3. Mixed: [tex]\(+5\)[/tex] points.
- Contribution: [tex]\(\frac{1}{2} \times 5 = \frac{5}{2} = 2.5\)[/tex].
Adding these contributions:
[tex]\[ E(\text{nickel}) = -0.5 - 0.5 + 2.5 = 1.5 \][/tex]
### Step 3: Compare Expected Values and Make a Decision
The expected value for playing with pennies is [tex]\(1.75\)[/tex], and for playing with nickels is [tex]\(1.5\)[/tex].
Since [tex]\(1.75 > 1.5\)[/tex], Alyssa should play with the pennies.
### Conclusion
The correct statement is:
[tex]\[ E(\text{penny}) = 1.75 \text{ and } E(\text{nickel}) = 1.5, \text{ so she should play with the pennies.} \][/tex]
### Step 1: Calculate the Probabilities
#### Probabilities for Pennies:
1. All pennies heads:
- Probability: [tex]\((\frac{1}{2})^3 = \frac{1}{8}\)[/tex].
2. All pennies tails:
- Probability: [tex]\((\frac{1}{2})^3 = \frac{1}{8}\)[/tex].
3. At least one of each (mixed):
- Probability: [tex]\(1 - \left( \frac{1}{8} + \frac{1}{8} \right) = 1 - \frac{2}{8} = \frac{6}{8} = \frac{3}{4}\)[/tex].
#### Probabilities for Nickels:
1. Both nickels heads:
- Probability: [tex]\((\frac{1}{2})^2 = \frac{1}{4}\)[/tex].
2. Both nickels tails:
- Probability: [tex]\((\frac{1}{2})^2 = \frac{1}{4}\)[/tex].
3. One of each (mixed):
- Probability: [tex]\(1 - \left( \frac{1}{4} + \frac{1}{4} \right) = 1 - \frac{2}{4} = \frac{2}{4} = \frac{1}{2}\)[/tex].
### Step 2: Calculate the Expected Points
#### Expected Points for Pennies:
1. All pennies heads: [tex]\(-2\)[/tex] points.
- Contribution: [tex]\(\frac{1}{8} \times -2 = -\frac{2}{8} = -0.25\)[/tex].
2. All pennies tails: [tex]\(-2\)[/tex] points.
- Contribution: [tex]\(\frac{1}{8} \times -2 = -\frac{2}{8} = -0.25\)[/tex].
3. Mixed: [tex]\(+3\)[/tex] points.
- Contribution: [tex]\(\frac{3}{4} \times 3 = \frac{9}{4} = 2.25\)[/tex].
Adding these contributions:
[tex]\[ E(\text{penny}) = -0.25 - 0.25 + 2.25 = 1.75 \][/tex]
#### Expected Points for Nickels:
1. Both nickels heads: [tex]\(-2\)[/tex] points.
- Contribution: [tex]\(\frac{1}{4} \times -2 = -\frac{2}{4} = -0.5\)[/tex].
2. Both nickels tails: [tex]\(-2\)[/tex] points.
- Contribution: [tex]\(\frac{1}{4} \times -2 = -\frac{2}{4} = -0.5\)[/tex].
3. Mixed: [tex]\(+5\)[/tex] points.
- Contribution: [tex]\(\frac{1}{2} \times 5 = \frac{5}{2} = 2.5\)[/tex].
Adding these contributions:
[tex]\[ E(\text{nickel}) = -0.5 - 0.5 + 2.5 = 1.5 \][/tex]
### Step 3: Compare Expected Values and Make a Decision
The expected value for playing with pennies is [tex]\(1.75\)[/tex], and for playing with nickels is [tex]\(1.5\)[/tex].
Since [tex]\(1.75 > 1.5\)[/tex], Alyssa should play with the pennies.
### Conclusion
The correct statement is:
[tex]\[ E(\text{penny}) = 1.75 \text{ and } E(\text{nickel}) = 1.5, \text{ so she should play with the pennies.} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.