At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

A charity is holding a raffle to raise money. There is one car worth [tex]\$30,000[/tex] and five [tex]\$100[/tex] gift cards being raffled off. Each ticket costs [tex]\$20[/tex], and there are a total of 5,000 tickets being sold. Which equation correctly depicts the calculation of the expected value for a ticket?

A. [tex]30,000\left(\frac{1}{5000}\right)+100\left(\frac{1}{1000}\right)+(-20)\left(\frac{2497}{2500}\right)=E(X)[/tex]
B. [tex]29,980\left(\frac{1}{5000}\right)+80\left(\frac{1}{1000}\right)+(-20)\left(\frac{2497}{2500}\right)=E(X)[/tex]
C. [tex]30,000\left(\frac{1}{5000}\right)+100\left(\frac{1}{1000}\right)=E(X)[/tex]
D. [tex]29,980\left(\frac{1}{5000}\right)+80\left(\frac{1}{1000}\right)=E(X)[/tex]


Sagot :

To determine which equation correctly depicts the calculation of the expected value for a ticket, we need to consider the possible outcomes and their associated probabilities and values.

1. Winning the Car:
- Value: [tex]$30,000 - Probability: \(\frac{1}{5000}\) - Expected Value Contribution: \(30,000 \times \frac{1}{5000}\) 2. Winning a Gift Card: - Value: $[/tex]100
- Probability: [tex]\(\frac{5}{5000}\)[/tex] (because there are 5 gift cards and 5000 total tickets)
- Expected Value Contribution: [tex]\(100 \times \frac{5}{5000}\)[/tex]

3. Losing (Not winning a car or a gift card):
- Value: $-20 (cost of the ticket)
- Probability: [tex]\(\frac{4994}{5000}\)[/tex] (since [tex]\(\frac{1}{5000}\)[/tex] + [tex]\(\frac{5}{5000}\)[/tex] are the probabilities of winning, so losing probability is [tex]\(1 - \left(\frac{1}{5000} + \frac{5}{5000}\right) = \frac{4994}{5000}\)[/tex])
- Expected Value Contribution: [tex]\(-20 \times \frac{4994}{5000}\)[/tex]

Now we sum these contributions to find the expected value [tex]\(E(X)\)[/tex]:

[tex]\[ E(X) = 30,000 \left(\frac{1}{5000}\right) + 100 \left(\frac{5}{5000}\right) + (-20) \left(\frac{4994}{5000}\right) \][/tex]

Breaking down the calculation:
- [tex]\(30,000 \left(\frac{1}{5000}\right) = 6.0\)[/tex]
- [tex]\(100 \left(\frac{5}{5000}\right) = 0.1\)[/tex]
- [tex]\(-20 \left(\frac{4994}{5000}\right) = -19.976\)[/tex]

Adding these components, we get:
[tex]\[ E(X) = 6.0 + 0.1 + (-19.976) = -13.876 \][/tex]

The correct equation form which describes this is:
[tex]\[ 30,000\left(\frac{1}{5000}\right)+100\left(\frac{1}{1000}\right)+(-20)\left(\frac{4994}{5000}\right)=E(X) \][/tex]

However, simplifying the fractions in the last term:

[tex]\[ \frac{4994}{5000} = \left(\frac{5000 - 1 - 5}{5000}\right) = \frac{4994}{5000} \][/tex]

We have:
[tex]\[ (-20) \left(\frac{5000 - 1 - 5}{5000}\right) \][/tex]

So, the complete equation reflecting this scenario is:

[tex]\[ 30,000\left(\frac{1}{5000}\right)+100\left(\frac{1}{1000}\right)+(-20)\left(\frac{5000 - 1 - 5}{5000}\right)=E(X) \][/tex]

Thus, the correct answer is:

[tex]\[30,000\left(\frac{1}{5000}\right)+100\left(\frac{1}{1000}\right)+(-20)\left(\frac{5000 - 1 - 5}{5000}\right)=E(X)\][/tex]