Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation, [tex]\(\log \left(q^2 + 7q\right) = \log 18\)[/tex], follow these steps:
1. Remove the logarithms:
Since we have [tex]\(\log A = \log B\)[/tex], we can equate the arguments:
[tex]\[ q^2 + 7q = 18 \][/tex]
2. Set up the quadratic equation:
Rewrite the equation in standard form:
[tex]\[ q^2 + 7q - 18 = 0 \][/tex]
3. Solve the quadratic equation:
To solve [tex]\(q^2 + 7q - 18 = 0\)[/tex], factorize or use the quadratic formula [tex]\(q = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = 7\)[/tex], and [tex]\(c = -18\)[/tex].
4. Find the solutions:
Solve the quadratic equation by factoring:
[tex]\[ (q + 9)(q - 2) = 0 \][/tex]
Set each factor to zero and solve for [tex]\(q\)[/tex]:
[tex]\[ q + 9 = 0 \quad \Rightarrow \quad q = -9 \][/tex]
[tex]\[ q - 2 = 0 \quad \Rightarrow \quad q = 2 \][/tex]
5. Verify the solutions:
Substitute [tex]\(q = -9\)[/tex] and [tex]\(q = 2\)[/tex] back into the original argument [tex]\(q^2 + 7q\)[/tex] to ensure the solutions are valid:
[tex]\[ \log((-9)^2 + 7(-9)) = \log(81 - 63) = \log(18) \quad \text{(valid)} \][/tex]
[tex]\[ \log(2^2 + 7 \cdot 2) = \log(4 + 14) = \log(18) \quad \text{(valid)} \][/tex]
Both solutions are valid. Thus, the exact solution set is:
[tex]\[ \boxed{-9, 2} \][/tex]
1. Remove the logarithms:
Since we have [tex]\(\log A = \log B\)[/tex], we can equate the arguments:
[tex]\[ q^2 + 7q = 18 \][/tex]
2. Set up the quadratic equation:
Rewrite the equation in standard form:
[tex]\[ q^2 + 7q - 18 = 0 \][/tex]
3. Solve the quadratic equation:
To solve [tex]\(q^2 + 7q - 18 = 0\)[/tex], factorize or use the quadratic formula [tex]\(q = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = 7\)[/tex], and [tex]\(c = -18\)[/tex].
4. Find the solutions:
Solve the quadratic equation by factoring:
[tex]\[ (q + 9)(q - 2) = 0 \][/tex]
Set each factor to zero and solve for [tex]\(q\)[/tex]:
[tex]\[ q + 9 = 0 \quad \Rightarrow \quad q = -9 \][/tex]
[tex]\[ q - 2 = 0 \quad \Rightarrow \quad q = 2 \][/tex]
5. Verify the solutions:
Substitute [tex]\(q = -9\)[/tex] and [tex]\(q = 2\)[/tex] back into the original argument [tex]\(q^2 + 7q\)[/tex] to ensure the solutions are valid:
[tex]\[ \log((-9)^2 + 7(-9)) = \log(81 - 63) = \log(18) \quad \text{(valid)} \][/tex]
[tex]\[ \log(2^2 + 7 \cdot 2) = \log(4 + 14) = \log(18) \quad \text{(valid)} \][/tex]
Both solutions are valid. Thus, the exact solution set is:
[tex]\[ \boxed{-9, 2} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.