Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sofia made a mistake in step [tex]\( 3 \)[/tex]. She should have properly swapped [tex]\( x \)[/tex] and [tex]\( y \)[/tex] and then solved for [tex]\( y \)[/tex]. Specifically, she should have written [tex]\( x = \frac{3y + 4}{8} \)[/tex] and then multiplied both sides by [tex]\( 8 \)[/tex] to isolate [tex]\( y \)[/tex].
Here's the corrected step-by-step solution:
1. Step 1: [tex]\( f(x) = \frac{3x + 4}{8} \)[/tex] (given)
2. Step 2: Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex] to get [tex]\( y = \frac{3x + 4}{8} \)[/tex].
3. Correct Step 3: Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse, giving us [tex]\( x = \frac{3y + 4}{8} \)[/tex].
4. Correct Step 4: Multiply both sides by [tex]\( 8 \)[/tex] to get [tex]\( 8x = 3y + 4 \)[/tex].
5. Subtract [tex]\( 4 \)[/tex] from both sides to isolate the term with [tex]\( y \)[/tex]: [tex]\( 8x - 4 = 3y \)[/tex].
6. Divide both sides by [tex]\( 3 \)[/tex] to solve for [tex]\( y \)[/tex]: [tex]\( y = \frac{8x - 4}{3} \)[/tex].
7. Finally, replace [tex]\( y \)[/tex] with [tex]\( f^{-1}(x) \)[/tex] to express the inverse function:
[tex]\[ f^{-1}(x) = \frac{8x - 4}{3} \][/tex].
So, Sofia's mistake occurred in step [tex]\( 3 \)[/tex], where she should have written [tex]\( x = \frac{3y + 4}{8} \)[/tex] and then multiplied both sides by [tex]\( 8 \)[/tex] to proceed correctly.
Here's the corrected step-by-step solution:
1. Step 1: [tex]\( f(x) = \frac{3x + 4}{8} \)[/tex] (given)
2. Step 2: Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex] to get [tex]\( y = \frac{3x + 4}{8} \)[/tex].
3. Correct Step 3: Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse, giving us [tex]\( x = \frac{3y + 4}{8} \)[/tex].
4. Correct Step 4: Multiply both sides by [tex]\( 8 \)[/tex] to get [tex]\( 8x = 3y + 4 \)[/tex].
5. Subtract [tex]\( 4 \)[/tex] from both sides to isolate the term with [tex]\( y \)[/tex]: [tex]\( 8x - 4 = 3y \)[/tex].
6. Divide both sides by [tex]\( 3 \)[/tex] to solve for [tex]\( y \)[/tex]: [tex]\( y = \frac{8x - 4}{3} \)[/tex].
7. Finally, replace [tex]\( y \)[/tex] with [tex]\( f^{-1}(x) \)[/tex] to express the inverse function:
[tex]\[ f^{-1}(x) = \frac{8x - 4}{3} \][/tex].
So, Sofia's mistake occurred in step [tex]\( 3 \)[/tex], where she should have written [tex]\( x = \frac{3y + 4}{8} \)[/tex] and then multiplied both sides by [tex]\( 8 \)[/tex] to proceed correctly.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.