At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of finding the appropriate identity matrices [tex]\( I_m \)[/tex] and [tex]\( I_n \)[/tex] such that [tex]\( I_m A = A \)[/tex] and [tex]\( A I_n = A \)[/tex], let's consider the dimensions of the given matrix [tex]\( A \)[/tex].
The matrix [tex]\( A \)[/tex] is given as:
[tex]\[ A = \begin{pmatrix} 6 & 1 & -2 \\ 4 & -3 & 4 \end{pmatrix} \][/tex]
[tex]\( A \)[/tex] is a [tex]\( 2 \times 3 \)[/tex] matrix, meaning it has 2 rows and 3 columns.
### Finding [tex]\( I_m \)[/tex]:
For the product [tex]\( I_m A = A \)[/tex], the identity matrix [tex]\( I_m \)[/tex] must have dimensions such that it can multiply directly with [tex]\( A \)[/tex] on the left. This means that [tex]\( I_m \)[/tex] must be a [tex]\( 2 \times 2 \)[/tex] identity matrix because [tex]\( I_m A \)[/tex] will involve multiplying a [tex]\( 2 \times 2 \)[/tex] matrix with a [tex]\( 2 \times 3 \)[/tex] matrix, resulting in a [tex]\( 2 \times 3 \)[/tex] matrix (the same dimensions as [tex]\( A \)[/tex]).
The [tex]\( 2 \times 2 \)[/tex] identity matrix [tex]\( I_m \)[/tex] is:
[tex]\[ I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Thus, the appropriate identity matrix [tex]\( I_m \)[/tex] is:
[tex]\[ I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
So, [tex]\( I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)[/tex].
The matrix [tex]\( A \)[/tex] is given as:
[tex]\[ A = \begin{pmatrix} 6 & 1 & -2 \\ 4 & -3 & 4 \end{pmatrix} \][/tex]
[tex]\( A \)[/tex] is a [tex]\( 2 \times 3 \)[/tex] matrix, meaning it has 2 rows and 3 columns.
### Finding [tex]\( I_m \)[/tex]:
For the product [tex]\( I_m A = A \)[/tex], the identity matrix [tex]\( I_m \)[/tex] must have dimensions such that it can multiply directly with [tex]\( A \)[/tex] on the left. This means that [tex]\( I_m \)[/tex] must be a [tex]\( 2 \times 2 \)[/tex] identity matrix because [tex]\( I_m A \)[/tex] will involve multiplying a [tex]\( 2 \times 2 \)[/tex] matrix with a [tex]\( 2 \times 3 \)[/tex] matrix, resulting in a [tex]\( 2 \times 3 \)[/tex] matrix (the same dimensions as [tex]\( A \)[/tex]).
The [tex]\( 2 \times 2 \)[/tex] identity matrix [tex]\( I_m \)[/tex] is:
[tex]\[ I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Thus, the appropriate identity matrix [tex]\( I_m \)[/tex] is:
[tex]\[ I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
So, [tex]\( I_m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.