Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let's solve this step-by-step.
We are given pairs of input and output values:
[tex]\[ \begin{array}{|c|c|} \hline \text{Input (x)} & \text{Output (y)} \\ \hline 1 & 11 \\ \hline 2 & 13 \\ \hline 3 & 15 \\ \hline 4 & 17 \\ \hline 5 & 19 \\ \hline \end{array} \][/tex]
We need to determine the rate of change for each consecutive pair of points. The rate of change can be found using the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's compute this for each pair of consecutive points:
1. Between [tex]\((1, 11)\)[/tex] and [tex]\((2, 13)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{13 - 11}{2 - 1} = \frac{2}{1} = 2.0 \][/tex]
2. Between [tex]\((2, 13)\)[/tex] and [tex]\((3, 15)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{15 - 13}{3 - 2} = \frac{2}{1} = 2.0 \][/tex]
3. Between [tex]\((3, 15)\)[/tex] and [tex]\((4, 17)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{17 - 15}{4 - 3} = \frac{2}{1} = 2.0 \][/tex]
4. Between [tex]\((4, 17)\)[/tex] and [tex]\((5, 19)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{19 - 17}{5 - 4} = \frac{2}{1} = 2.0 \][/tex]
Summarizing, the rate of change between each consecutive pair of points is:
[tex]\[ [2.0, 2.0, 2.0, 2.0] \][/tex]
Therefore, the rate of change is consistent and equal to 2.0 for each interval between the given points.
We are given pairs of input and output values:
[tex]\[ \begin{array}{|c|c|} \hline \text{Input (x)} & \text{Output (y)} \\ \hline 1 & 11 \\ \hline 2 & 13 \\ \hline 3 & 15 \\ \hline 4 & 17 \\ \hline 5 & 19 \\ \hline \end{array} \][/tex]
We need to determine the rate of change for each consecutive pair of points. The rate of change can be found using the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's compute this for each pair of consecutive points:
1. Between [tex]\((1, 11)\)[/tex] and [tex]\((2, 13)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{13 - 11}{2 - 1} = \frac{2}{1} = 2.0 \][/tex]
2. Between [tex]\((2, 13)\)[/tex] and [tex]\((3, 15)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{15 - 13}{3 - 2} = \frac{2}{1} = 2.0 \][/tex]
3. Between [tex]\((3, 15)\)[/tex] and [tex]\((4, 17)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{17 - 15}{4 - 3} = \frac{2}{1} = 2.0 \][/tex]
4. Between [tex]\((4, 17)\)[/tex] and [tex]\((5, 19)\)[/tex]:
[tex]\[ \text{Rate of change} = \frac{19 - 17}{5 - 4} = \frac{2}{1} = 2.0 \][/tex]
Summarizing, the rate of change between each consecutive pair of points is:
[tex]\[ [2.0, 2.0, 2.0, 2.0] \][/tex]
Therefore, the rate of change is consistent and equal to 2.0 for each interval between the given points.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.