Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's tackle this problem systematically by understanding both the original function and its inverse.
1. The original function given is:
[tex]\[ h(x) = -16x^2 + 25 \][/tex]
This function models the height [tex]\(h(x)\)[/tex] of a tennis ball [tex]\(x\)[/tex] seconds after it is dropped from a height of 25 feet.
2. To find the inverse function [tex]\(h^{-1}(x)\)[/tex], we need to express [tex]\(x\)[/tex] in terms of [tex]\(h\)[/tex]:
- Start by setting [tex]\(h(x)\)[/tex] equal to [tex]\(h\)[/tex]:
[tex]\[ h = -16x^2 + 25 \][/tex]
- Rearrange the equation to solve for [tex]\(x\)[/tex]:
[tex]\[ h - 25 = -16x^2 \][/tex]
[tex]\[ -16x^2 = h - 25 \][/tex]
[tex]\[ x^2 = \frac{25 - h}{16} \][/tex]
[tex]\[ x = \pm \sqrt{\frac{25 - h}{16}} \][/tex]
- Since time [tex]\(x\)[/tex] is non-negative, we take the positive root:
[tex]\[ x = \sqrt{\frac{25 - h}{16}} \][/tex]
3. Expressing this in terms of [tex]\(x\)[/tex], we can write the inverse function [tex]\(h^{-1}(x)\)[/tex]:
[tex]\[ h^{-1}(x) = \sqrt{\frac{25 - x}{16}} \][/tex]
4. The function [tex]\(h^{-1}(x)\)[/tex] is a square root function.
5. The domain of the inverse function [tex]\(h^{-1}(x)\)[/tex] must be within the range of the original function. Since [tex]\(h(x)\)[/tex] ranges from 0 to 25 (as it goes from the height of the roof down to the ground), [tex]\(x\)[/tex] must be within that range:
[tex]\[ 0 \leq x \leq 25 \][/tex]
To summarize:
- The inverse function will be a square root function and will have limits on the domain.
- Function [tex]\(h^{-1}\)[/tex] will give [tex]\(h^{-1}(x) = \sqrt{\frac{25 - x}{16}}\)[/tex] in terms of [tex]\(x\)[/tex].
Let's fill in the blanks based on this analysis:
Complete the statements about the inverse function, [tex]\(h^{-1}\)[/tex]:
- The inverse function will be a square root function and will have limits on the domain.
- Function [tex]\(h^{-1}\)[/tex] will give [tex]\(h^{-1}(x) = \sqrt{\frac{25 - x}{16}}\)[/tex] in terms of [tex]\(x\)[/tex].
1. The original function given is:
[tex]\[ h(x) = -16x^2 + 25 \][/tex]
This function models the height [tex]\(h(x)\)[/tex] of a tennis ball [tex]\(x\)[/tex] seconds after it is dropped from a height of 25 feet.
2. To find the inverse function [tex]\(h^{-1}(x)\)[/tex], we need to express [tex]\(x\)[/tex] in terms of [tex]\(h\)[/tex]:
- Start by setting [tex]\(h(x)\)[/tex] equal to [tex]\(h\)[/tex]:
[tex]\[ h = -16x^2 + 25 \][/tex]
- Rearrange the equation to solve for [tex]\(x\)[/tex]:
[tex]\[ h - 25 = -16x^2 \][/tex]
[tex]\[ -16x^2 = h - 25 \][/tex]
[tex]\[ x^2 = \frac{25 - h}{16} \][/tex]
[tex]\[ x = \pm \sqrt{\frac{25 - h}{16}} \][/tex]
- Since time [tex]\(x\)[/tex] is non-negative, we take the positive root:
[tex]\[ x = \sqrt{\frac{25 - h}{16}} \][/tex]
3. Expressing this in terms of [tex]\(x\)[/tex], we can write the inverse function [tex]\(h^{-1}(x)\)[/tex]:
[tex]\[ h^{-1}(x) = \sqrt{\frac{25 - x}{16}} \][/tex]
4. The function [tex]\(h^{-1}(x)\)[/tex] is a square root function.
5. The domain of the inverse function [tex]\(h^{-1}(x)\)[/tex] must be within the range of the original function. Since [tex]\(h(x)\)[/tex] ranges from 0 to 25 (as it goes from the height of the roof down to the ground), [tex]\(x\)[/tex] must be within that range:
[tex]\[ 0 \leq x \leq 25 \][/tex]
To summarize:
- The inverse function will be a square root function and will have limits on the domain.
- Function [tex]\(h^{-1}\)[/tex] will give [tex]\(h^{-1}(x) = \sqrt{\frac{25 - x}{16}}\)[/tex] in terms of [tex]\(x\)[/tex].
Let's fill in the blanks based on this analysis:
Complete the statements about the inverse function, [tex]\(h^{-1}\)[/tex]:
- The inverse function will be a square root function and will have limits on the domain.
- Function [tex]\(h^{-1}\)[/tex] will give [tex]\(h^{-1}(x) = \sqrt{\frac{25 - x}{16}}\)[/tex] in terms of [tex]\(x\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.