Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's address each part of the problem step by step:
1. Value of [tex]$6!$[/tex]:
The expression [tex]\(6!\)[/tex] (read as "6 factorial") represents the product of all positive integers up to 6. The value of [tex]\(6!\)[/tex] is:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{720} \][/tex]
2. Number of ways to assign responsibilities to two people:
We need to determine the number of ways to choose 2 people from a group of 6 and assign roles to them. According to the given expression, this can be calculated using the formula:
[tex]\[ \frac{6!}{(6-2)!} \][/tex]
Here, [tex]\(6!\)[/tex] is the factorial of 6, and [tex]\((6-2)!\)[/tex] is the factorial of 4, because [tex]\(6-2=4\)[/tex].
We already know that [tex]\(6! = 720\)[/tex].
The value of [tex]\(4!\)[/tex] is:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \][/tex]
Therefore, the number of ways:
[tex]\[ \frac{6!}{(6-2)!} = \frac{720}{24} = 30 \][/tex]
So, the number of ways the two people can be chosen and assigned responsibilities is:
[tex]\[ \boxed{30} \][/tex]
3. Number of ways to choose three people to sit in front:
We need to determine the number of ways to choose 3 people out of 6 to sit in front. According to the given expression, this can be calculated using the combination formula:
[tex]\[ \frac{6!}{(6-3)! \times 3!} \][/tex]
Here, [tex]\(6!\)[/tex] is the factorial of 6, [tex]\((6-3)!\)[/tex] is the factorial of 3, and [tex]\(3!\)[/tex] is the factorial of 3.
We already know that [tex]\(6! = 720\)[/tex].
The value of [tex]\(3!\)[/tex] is:
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]
Therefore, the number of ways:
[tex]\[ \frac{6!}{(6-3)!, 3!} = \frac{720}{6 \times 6} = \frac{720}{36} = 20 \][/tex]
So, the number of ways the group can be chosen is:
[tex]\[ \boxed{20} \][/tex]
In summary:
- The value of [tex]\(6!\)[/tex] is [tex]\(720\)[/tex].
- The number of ways to assign responsibilities to two people is [tex]\(30\)[/tex].
- The number of ways to choose three people to sit in front is [tex]\(20\)[/tex].
1. Value of [tex]$6!$[/tex]:
The expression [tex]\(6!\)[/tex] (read as "6 factorial") represents the product of all positive integers up to 6. The value of [tex]\(6!\)[/tex] is:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{720} \][/tex]
2. Number of ways to assign responsibilities to two people:
We need to determine the number of ways to choose 2 people from a group of 6 and assign roles to them. According to the given expression, this can be calculated using the formula:
[tex]\[ \frac{6!}{(6-2)!} \][/tex]
Here, [tex]\(6!\)[/tex] is the factorial of 6, and [tex]\((6-2)!\)[/tex] is the factorial of 4, because [tex]\(6-2=4\)[/tex].
We already know that [tex]\(6! = 720\)[/tex].
The value of [tex]\(4!\)[/tex] is:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \][/tex]
Therefore, the number of ways:
[tex]\[ \frac{6!}{(6-2)!} = \frac{720}{24} = 30 \][/tex]
So, the number of ways the two people can be chosen and assigned responsibilities is:
[tex]\[ \boxed{30} \][/tex]
3. Number of ways to choose three people to sit in front:
We need to determine the number of ways to choose 3 people out of 6 to sit in front. According to the given expression, this can be calculated using the combination formula:
[tex]\[ \frac{6!}{(6-3)! \times 3!} \][/tex]
Here, [tex]\(6!\)[/tex] is the factorial of 6, [tex]\((6-3)!\)[/tex] is the factorial of 3, and [tex]\(3!\)[/tex] is the factorial of 3.
We already know that [tex]\(6! = 720\)[/tex].
The value of [tex]\(3!\)[/tex] is:
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]
Therefore, the number of ways:
[tex]\[ \frac{6!}{(6-3)!, 3!} = \frac{720}{6 \times 6} = \frac{720}{36} = 20 \][/tex]
So, the number of ways the group can be chosen is:
[tex]\[ \boxed{20} \][/tex]
In summary:
- The value of [tex]\(6!\)[/tex] is [tex]\(720\)[/tex].
- The number of ways to assign responsibilities to two people is [tex]\(30\)[/tex].
- The number of ways to choose three people to sit in front is [tex]\(20\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.