At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve the inequality step by step:
Problem: Solve the inequality [tex]\(4(3 - x) < 5x + 6\)[/tex].
Step 1: Distribute the 4 on the left side.
[tex]\[ 4(3 - x) < 5x + 6 \][/tex]
[tex]\[ 12 - 4x < 5x + 6 \][/tex]
Step 2: Move all terms involving [tex]\(x\)[/tex] to one side. To do this, subtract [tex]\(5x\)[/tex] from both sides.
[tex]\[ 12 - 4x - 5x < 6 \][/tex]
[tex]\[ 12 - 9x < 6 \][/tex]
Step 3: Move the constant term (12) to the other side by subtracting 12 from both sides.
[tex]\[ 12 - 12 - 9x < 6 - 12 \][/tex]
[tex]\[ -9x < -6 \][/tex]
Step 4: Divide by the coefficient of [tex]\(x\)[/tex], which is -9, noting that dividing by a negative number reverses the inequality sign.
[tex]\[ x > \frac{-6}{-9} \][/tex]
[tex]\[ x > \frac{2}{3} \][/tex]
So, the solution to the inequality [tex]\(4(3 - x) < 5x + 6\)[/tex] is [tex]\(x > \frac{2}{3}\)[/tex].
Finally, converting [tex]\(\frac{2}{3}\)[/tex] to its decimal form, we get:
[tex]\[ \frac{2}{3} \approx 0.6666666666666666 \][/tex]
Thus, [tex]\(x > 0.6666666666666666\)[/tex].
Problem: Solve the inequality [tex]\(4(3 - x) < 5x + 6\)[/tex].
Step 1: Distribute the 4 on the left side.
[tex]\[ 4(3 - x) < 5x + 6 \][/tex]
[tex]\[ 12 - 4x < 5x + 6 \][/tex]
Step 2: Move all terms involving [tex]\(x\)[/tex] to one side. To do this, subtract [tex]\(5x\)[/tex] from both sides.
[tex]\[ 12 - 4x - 5x < 6 \][/tex]
[tex]\[ 12 - 9x < 6 \][/tex]
Step 3: Move the constant term (12) to the other side by subtracting 12 from both sides.
[tex]\[ 12 - 12 - 9x < 6 - 12 \][/tex]
[tex]\[ -9x < -6 \][/tex]
Step 4: Divide by the coefficient of [tex]\(x\)[/tex], which is -9, noting that dividing by a negative number reverses the inequality sign.
[tex]\[ x > \frac{-6}{-9} \][/tex]
[tex]\[ x > \frac{2}{3} \][/tex]
So, the solution to the inequality [tex]\(4(3 - x) < 5x + 6\)[/tex] is [tex]\(x > \frac{2}{3}\)[/tex].
Finally, converting [tex]\(\frac{2}{3}\)[/tex] to its decimal form, we get:
[tex]\[ \frac{2}{3} \approx 0.6666666666666666 \][/tex]
Thus, [tex]\(x > 0.6666666666666666\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.