Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the equation of the regression line that passes through the points [tex]\((2, 10)\)[/tex] and [tex]\((7, 18)\)[/tex], we follow these steps:
1. Calculate the slope (m):
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the given points [tex]\((x_1, y_1) = (2, 10)\)[/tex] and [tex]\((x_2, y_2) = (7, 18)\)[/tex], we get:
[tex]\[ m = \frac{18 - 10}{7 - 2} = \frac{8}{5} = 1.6 \][/tex]
2. Calculate the y-intercept (b):
The formula for the y-intercept [tex]\(b\)[/tex] of the line in the form [tex]\(y = mx + b\)[/tex] is:
[tex]\[ b = y_1 - m \cdot x_1 \][/tex]
Using the calculated slope [tex]\(m = 1.6\)[/tex] and the point [tex]\((2, 10)\)[/tex]:
[tex]\[ b = 10 - (1.6 \times 2) = 10 - 3.2 = 6.8 \][/tex]
3. Formulate the equation of the line:
Combining the slope and y-intercept, the equation of the regression line is:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex]
So, the equation of Jacob's regression line is:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex] Hence, the correct answer is the first option:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex]
1. Calculate the slope (m):
The formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the given points [tex]\((x_1, y_1) = (2, 10)\)[/tex] and [tex]\((x_2, y_2) = (7, 18)\)[/tex], we get:
[tex]\[ m = \frac{18 - 10}{7 - 2} = \frac{8}{5} = 1.6 \][/tex]
2. Calculate the y-intercept (b):
The formula for the y-intercept [tex]\(b\)[/tex] of the line in the form [tex]\(y = mx + b\)[/tex] is:
[tex]\[ b = y_1 - m \cdot x_1 \][/tex]
Using the calculated slope [tex]\(m = 1.6\)[/tex] and the point [tex]\((2, 10)\)[/tex]:
[tex]\[ b = 10 - (1.6 \times 2) = 10 - 3.2 = 6.8 \][/tex]
3. Formulate the equation of the line:
Combining the slope and y-intercept, the equation of the regression line is:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex]
So, the equation of Jacob's regression line is:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex] Hence, the correct answer is the first option:
[tex]\[ \hat{y} = 1.6 x + 6.8 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.