Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the maximum of the profit function [tex]\( P = 2x + 10y \)[/tex] subject to the given constraints, we need to analyze the feasible region determined by the constraints:
1. [tex]\( 4x + 2y \leq 5 \)[/tex]
2. [tex]\( -3x + y \geq -2 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
We will identify the boundary lines of the constraints and determine the feasible region. This is where the solution to our optimal problem lies.
### Step 1: Identify the boundary lines of the constraints
1. For the constraint [tex]\( 4x + 2y \leq 5 \)[/tex]:
- The equation of the line is [tex]\( 4x + 2y = 5 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \frac{5 - 4x}{2} \)[/tex].
2. For the constraint [tex]\( -3x + y \geq -2 \)[/tex]:
- The equation of the line is [tex]\( -3x + y = -2 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = 3x - 2 \)[/tex].
3. For the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], these are simply the axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex], respectively.
### Step 2: Find the intersection points of the boundary lines
To identify the vertices of the feasible region, we find the intersection points of the lines described by the constraints:
1. Intersection of [tex]\( 4x + 2y = 5 \)[/tex] and [tex]\( -3x + y = -2 \)[/tex]:
- Solve these two equations simultaneously.
[tex]\[ 4x + 2(3x - 2) = 5 \][/tex]
[tex]\[ 4x + 6x - 4 = 5 \][/tex]
[tex]\[ 10x - 4 = 5 \][/tex]
[tex]\[ 10x = 9 \implies x = \frac{9}{10} = 0.9 \][/tex]
Substituting [tex]\( x = 0.9 \)[/tex] back into [tex]\( y = 3x - 2 \)[/tex]:
[tex]\[ y = 3(0.9) - 2 = 2.7 - 2 = 0.7 \][/tex]
Therefore, one point is [tex]\( \left(0.9, 0.7\right) \)[/tex].
### Step 3: Check intersections with the axes
- When [tex]\( x = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 2y = 5 \implies y = \frac{5}{2} = 2.5 \][/tex]
Intersection is [tex]\( (0, 2.5) \)[/tex].
- When [tex]\( y = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 4x = 5 \implies x = \frac{5}{4} = 1.25 \][/tex]
Intersection is [tex]\( (1.25, 0) \)[/tex].
### Step 4: Evaluate the profit function at these points
The feasible vertices are:
- [tex]\( (0, 2.5) \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex]
- [tex]\( (1.25, 0) \)[/tex]
- (plus origin which generally does not maximize the profit function)
Evaluate at each point:
- For [tex]\( (0, 2.5) \)[/tex]: [tex]\( P = 2(0) + 10(2.5) = 0 + 25 = 25 \)[/tex]
- For [tex]\( (1.25, 0) \)[/tex]: [tex]\( P = 2(1.25) + 10(0) = 2.5 + 0 = 2.5 \)[/tex]
- For [tex]\( (0.9, 0.7) \)[/tex]: [tex]\( P = 2(0.9) + 10(0.7) = 1.8 + 7 = 8.8 \)[/tex]
### Step 5: Identify the maximum profit
From the calculated profits:
- [tex]\( (0, 2.5) \)[/tex] yields a profit of [tex]\( 25 \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex] yields a profit of [tex]\( 8.8 \)[/tex]
- [tex]\( (1.25, 0) \)[/tex] yields a profit of [tex]\( 2.5 \)[/tex]
The maximum profit is [tex]\( 25 \)[/tex] at the point [tex]\( (0, 2.5) \)[/tex].
Thus, the maximum profit is:
[tex]\[ \boxed{(0, 2.50, 25.00)} \][/tex]
1. [tex]\( 4x + 2y \leq 5 \)[/tex]
2. [tex]\( -3x + y \geq -2 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
We will identify the boundary lines of the constraints and determine the feasible region. This is where the solution to our optimal problem lies.
### Step 1: Identify the boundary lines of the constraints
1. For the constraint [tex]\( 4x + 2y \leq 5 \)[/tex]:
- The equation of the line is [tex]\( 4x + 2y = 5 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \frac{5 - 4x}{2} \)[/tex].
2. For the constraint [tex]\( -3x + y \geq -2 \)[/tex]:
- The equation of the line is [tex]\( -3x + y = -2 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = 3x - 2 \)[/tex].
3. For the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], these are simply the axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex], respectively.
### Step 2: Find the intersection points of the boundary lines
To identify the vertices of the feasible region, we find the intersection points of the lines described by the constraints:
1. Intersection of [tex]\( 4x + 2y = 5 \)[/tex] and [tex]\( -3x + y = -2 \)[/tex]:
- Solve these two equations simultaneously.
[tex]\[ 4x + 2(3x - 2) = 5 \][/tex]
[tex]\[ 4x + 6x - 4 = 5 \][/tex]
[tex]\[ 10x - 4 = 5 \][/tex]
[tex]\[ 10x = 9 \implies x = \frac{9}{10} = 0.9 \][/tex]
Substituting [tex]\( x = 0.9 \)[/tex] back into [tex]\( y = 3x - 2 \)[/tex]:
[tex]\[ y = 3(0.9) - 2 = 2.7 - 2 = 0.7 \][/tex]
Therefore, one point is [tex]\( \left(0.9, 0.7\right) \)[/tex].
### Step 3: Check intersections with the axes
- When [tex]\( x = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 2y = 5 \implies y = \frac{5}{2} = 2.5 \][/tex]
Intersection is [tex]\( (0, 2.5) \)[/tex].
- When [tex]\( y = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 4x = 5 \implies x = \frac{5}{4} = 1.25 \][/tex]
Intersection is [tex]\( (1.25, 0) \)[/tex].
### Step 4: Evaluate the profit function at these points
The feasible vertices are:
- [tex]\( (0, 2.5) \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex]
- [tex]\( (1.25, 0) \)[/tex]
- (plus origin which generally does not maximize the profit function)
Evaluate at each point:
- For [tex]\( (0, 2.5) \)[/tex]: [tex]\( P = 2(0) + 10(2.5) = 0 + 25 = 25 \)[/tex]
- For [tex]\( (1.25, 0) \)[/tex]: [tex]\( P = 2(1.25) + 10(0) = 2.5 + 0 = 2.5 \)[/tex]
- For [tex]\( (0.9, 0.7) \)[/tex]: [tex]\( P = 2(0.9) + 10(0.7) = 1.8 + 7 = 8.8 \)[/tex]
### Step 5: Identify the maximum profit
From the calculated profits:
- [tex]\( (0, 2.5) \)[/tex] yields a profit of [tex]\( 25 \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex] yields a profit of [tex]\( 8.8 \)[/tex]
- [tex]\( (1.25, 0) \)[/tex] yields a profit of [tex]\( 2.5 \)[/tex]
The maximum profit is [tex]\( 25 \)[/tex] at the point [tex]\( (0, 2.5) \)[/tex].
Thus, the maximum profit is:
[tex]\[ \boxed{(0, 2.50, 25.00)} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.