Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the maximum of the profit function [tex]\( P = 2x + 10y \)[/tex] subject to the given constraints, we need to analyze the feasible region determined by the constraints:
1. [tex]\( 4x + 2y \leq 5 \)[/tex]
2. [tex]\( -3x + y \geq -2 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
We will identify the boundary lines of the constraints and determine the feasible region. This is where the solution to our optimal problem lies.
### Step 1: Identify the boundary lines of the constraints
1. For the constraint [tex]\( 4x + 2y \leq 5 \)[/tex]:
- The equation of the line is [tex]\( 4x + 2y = 5 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \frac{5 - 4x}{2} \)[/tex].
2. For the constraint [tex]\( -3x + y \geq -2 \)[/tex]:
- The equation of the line is [tex]\( -3x + y = -2 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = 3x - 2 \)[/tex].
3. For the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], these are simply the axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex], respectively.
### Step 2: Find the intersection points of the boundary lines
To identify the vertices of the feasible region, we find the intersection points of the lines described by the constraints:
1. Intersection of [tex]\( 4x + 2y = 5 \)[/tex] and [tex]\( -3x + y = -2 \)[/tex]:
- Solve these two equations simultaneously.
[tex]\[ 4x + 2(3x - 2) = 5 \][/tex]
[tex]\[ 4x + 6x - 4 = 5 \][/tex]
[tex]\[ 10x - 4 = 5 \][/tex]
[tex]\[ 10x = 9 \implies x = \frac{9}{10} = 0.9 \][/tex]
Substituting [tex]\( x = 0.9 \)[/tex] back into [tex]\( y = 3x - 2 \)[/tex]:
[tex]\[ y = 3(0.9) - 2 = 2.7 - 2 = 0.7 \][/tex]
Therefore, one point is [tex]\( \left(0.9, 0.7\right) \)[/tex].
### Step 3: Check intersections with the axes
- When [tex]\( x = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 2y = 5 \implies y = \frac{5}{2} = 2.5 \][/tex]
Intersection is [tex]\( (0, 2.5) \)[/tex].
- When [tex]\( y = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 4x = 5 \implies x = \frac{5}{4} = 1.25 \][/tex]
Intersection is [tex]\( (1.25, 0) \)[/tex].
### Step 4: Evaluate the profit function at these points
The feasible vertices are:
- [tex]\( (0, 2.5) \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex]
- [tex]\( (1.25, 0) \)[/tex]
- (plus origin which generally does not maximize the profit function)
Evaluate at each point:
- For [tex]\( (0, 2.5) \)[/tex]: [tex]\( P = 2(0) + 10(2.5) = 0 + 25 = 25 \)[/tex]
- For [tex]\( (1.25, 0) \)[/tex]: [tex]\( P = 2(1.25) + 10(0) = 2.5 + 0 = 2.5 \)[/tex]
- For [tex]\( (0.9, 0.7) \)[/tex]: [tex]\( P = 2(0.9) + 10(0.7) = 1.8 + 7 = 8.8 \)[/tex]
### Step 5: Identify the maximum profit
From the calculated profits:
- [tex]\( (0, 2.5) \)[/tex] yields a profit of [tex]\( 25 \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex] yields a profit of [tex]\( 8.8 \)[/tex]
- [tex]\( (1.25, 0) \)[/tex] yields a profit of [tex]\( 2.5 \)[/tex]
The maximum profit is [tex]\( 25 \)[/tex] at the point [tex]\( (0, 2.5) \)[/tex].
Thus, the maximum profit is:
[tex]\[ \boxed{(0, 2.50, 25.00)} \][/tex]
1. [tex]\( 4x + 2y \leq 5 \)[/tex]
2. [tex]\( -3x + y \geq -2 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
We will identify the boundary lines of the constraints and determine the feasible region. This is where the solution to our optimal problem lies.
### Step 1: Identify the boundary lines of the constraints
1. For the constraint [tex]\( 4x + 2y \leq 5 \)[/tex]:
- The equation of the line is [tex]\( 4x + 2y = 5 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \frac{5 - 4x}{2} \)[/tex].
2. For the constraint [tex]\( -3x + y \geq -2 \)[/tex]:
- The equation of the line is [tex]\( -3x + y = -2 \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = 3x - 2 \)[/tex].
3. For the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], these are simply the axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex], respectively.
### Step 2: Find the intersection points of the boundary lines
To identify the vertices of the feasible region, we find the intersection points of the lines described by the constraints:
1. Intersection of [tex]\( 4x + 2y = 5 \)[/tex] and [tex]\( -3x + y = -2 \)[/tex]:
- Solve these two equations simultaneously.
[tex]\[ 4x + 2(3x - 2) = 5 \][/tex]
[tex]\[ 4x + 6x - 4 = 5 \][/tex]
[tex]\[ 10x - 4 = 5 \][/tex]
[tex]\[ 10x = 9 \implies x = \frac{9}{10} = 0.9 \][/tex]
Substituting [tex]\( x = 0.9 \)[/tex] back into [tex]\( y = 3x - 2 \)[/tex]:
[tex]\[ y = 3(0.9) - 2 = 2.7 - 2 = 0.7 \][/tex]
Therefore, one point is [tex]\( \left(0.9, 0.7\right) \)[/tex].
### Step 3: Check intersections with the axes
- When [tex]\( x = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 2y = 5 \implies y = \frac{5}{2} = 2.5 \][/tex]
Intersection is [tex]\( (0, 2.5) \)[/tex].
- When [tex]\( y = 0 \)[/tex] in [tex]\( 4x + 2y = 5 \)[/tex]:
[tex]\[ 4x = 5 \implies x = \frac{5}{4} = 1.25 \][/tex]
Intersection is [tex]\( (1.25, 0) \)[/tex].
### Step 4: Evaluate the profit function at these points
The feasible vertices are:
- [tex]\( (0, 2.5) \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex]
- [tex]\( (1.25, 0) \)[/tex]
- (plus origin which generally does not maximize the profit function)
Evaluate at each point:
- For [tex]\( (0, 2.5) \)[/tex]: [tex]\( P = 2(0) + 10(2.5) = 0 + 25 = 25 \)[/tex]
- For [tex]\( (1.25, 0) \)[/tex]: [tex]\( P = 2(1.25) + 10(0) = 2.5 + 0 = 2.5 \)[/tex]
- For [tex]\( (0.9, 0.7) \)[/tex]: [tex]\( P = 2(0.9) + 10(0.7) = 1.8 + 7 = 8.8 \)[/tex]
### Step 5: Identify the maximum profit
From the calculated profits:
- [tex]\( (0, 2.5) \)[/tex] yields a profit of [tex]\( 25 \)[/tex]
- [tex]\( (0.9, 0.7) \)[/tex] yields a profit of [tex]\( 8.8 \)[/tex]
- [tex]\( (1.25, 0) \)[/tex] yields a profit of [tex]\( 2.5 \)[/tex]
The maximum profit is [tex]\( 25 \)[/tex] at the point [tex]\( (0, 2.5) \)[/tex].
Thus, the maximum profit is:
[tex]\[ \boxed{(0, 2.50, 25.00)} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.