Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the acceleration of the car, we use the formula for acceleration, which is defined as the change in velocity divided by the time interval over which the change occurs. Mathematically, this is represented as:
[tex]\[ a = \frac{\Delta v}{\Delta t} \][/tex]
where [tex]\( a \)[/tex] is the acceleration, [tex]\( \Delta v \)[/tex] is the change in velocity, and [tex]\( \Delta t \)[/tex] is the time interval.
Step-by-Step Solution:
1. Identify the initial velocity ([tex]\( v_i \)[/tex]):
The initial velocity of the car is given as [tex]\( 35 \, \text{m/s} \)[/tex].
2. Identify the final velocity ([tex]\( v_f \)[/tex]):
The final velocity of the car is given as [tex]\( 65 \, \text{m/s} \)[/tex].
3. Determine the change in velocity ([tex]\( \Delta v \)[/tex]):
The change in velocity is the difference between the final velocity and the initial velocity:
[tex]\[ \Delta v = v_f - v_i = 65\, \text{m/s} - 35\, \text{m/s} = 30\, \text{m/s} \][/tex]
4. Identify the time interval ([tex]\( \Delta t \)[/tex]):
The time interval over which this change occurs is given as [tex]\( 5 \)[/tex] seconds.
5. Calculate the acceleration ([tex]\( a \)[/tex]):
Substitute the values of [tex]\( \Delta v \)[/tex] and [tex]\( \Delta t \)[/tex] into the acceleration formula:
[tex]\[ a = \frac{\Delta v}{\Delta t} = \frac{30 \, \text{m/s}}{5 \, \text{s}} = 6 \, \text{m/s}^2 \][/tex]
Therefore, the acceleration of the car is [tex]\( 6 \, \text{m/s}^2 \)[/tex].
Conclusion:
The correct option is:
[tex]\[ \boxed{6 \, \text{m/s}^2} \][/tex]
[tex]\[ a = \frac{\Delta v}{\Delta t} \][/tex]
where [tex]\( a \)[/tex] is the acceleration, [tex]\( \Delta v \)[/tex] is the change in velocity, and [tex]\( \Delta t \)[/tex] is the time interval.
Step-by-Step Solution:
1. Identify the initial velocity ([tex]\( v_i \)[/tex]):
The initial velocity of the car is given as [tex]\( 35 \, \text{m/s} \)[/tex].
2. Identify the final velocity ([tex]\( v_f \)[/tex]):
The final velocity of the car is given as [tex]\( 65 \, \text{m/s} \)[/tex].
3. Determine the change in velocity ([tex]\( \Delta v \)[/tex]):
The change in velocity is the difference between the final velocity and the initial velocity:
[tex]\[ \Delta v = v_f - v_i = 65\, \text{m/s} - 35\, \text{m/s} = 30\, \text{m/s} \][/tex]
4. Identify the time interval ([tex]\( \Delta t \)[/tex]):
The time interval over which this change occurs is given as [tex]\( 5 \)[/tex] seconds.
5. Calculate the acceleration ([tex]\( a \)[/tex]):
Substitute the values of [tex]\( \Delta v \)[/tex] and [tex]\( \Delta t \)[/tex] into the acceleration formula:
[tex]\[ a = \frac{\Delta v}{\Delta t} = \frac{30 \, \text{m/s}}{5 \, \text{s}} = 6 \, \text{m/s}^2 \][/tex]
Therefore, the acceleration of the car is [tex]\( 6 \, \text{m/s}^2 \)[/tex].
Conclusion:
The correct option is:
[tex]\[ \boxed{6 \, \text{m/s}^2} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.