Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

What type of function is represented in the table?

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
[tex]$y$[/tex] & -7 & -2 & 3 & 8 & 13 & 18 \\
\hline
\end{tabular}

A. quadratic
B. exponential
C. logarithmic
D. linear


Sagot :

To determine the type of function represented by the given table, we'll analyze the relationship between the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values. Here is the table for reference:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline y & -7 & -2 & 3 & 8 & 13 & 18 \\ \hline \end{array} \][/tex]

### Step-by-Step Solution:

1. List the given [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -7 \\ 1 & -2 \\ 2 & 3 \\ 3 & 8 \\ 4 & 13 \\ 5 & 18 \\ \hline \end{array} \][/tex]

2. Calculate the differences between consecutive [tex]\( y \)[/tex]-values:

[tex]\[ \begin{array}{|c|c|c|} \hline x & y & \Delta y \\ \hline 0 & -7 & - \\ 1 & -2 & -2 - (-7) = 5 \\ 2 & 3 & 3 - (-2) = 5 \\ 3 & 8 & 8 - 3 = 5 \\ 4 & 13 & 13 - 8 = 5 \\ 5 & 18 & 18 - 13 = 5 \\ \hline \end{array} \][/tex]

So, the differences between consecutive [tex]\( y \)[/tex]-values are all 5.

3. Analyze the differences:

Since the differences between consecutive [tex]\( y \)[/tex]-values are constant (5), we have a consistent rate of change.

### Conclusion:
A function that has a constant rate of change in [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] is a linear function.

Thus, the type of function represented by the table is linear.