Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Simplify the following expression:

[tex]\[ \frac{x+12}{(x+1)^2(x-2)} \][/tex]


Sagot :

Sure, let's break down the process of simplifying and decomposing the expression [tex]\(\frac{x+12}{(x+1)^2(x-2)}\)[/tex] into partial fractions.

### Step 1: Express the given function

Given the expression:

[tex]\[ \frac{x+12}{(x+1)^2(x-2)} \][/tex]

### Step 2: Simplify if possible

First, we check if the expression can be simplified further. Here, since no common factors exist between the numerator and the denominator, the expression is already simplified.

[tex]\[ \frac{x+12}{(x+1)^2(x-2)} \][/tex]

### Step 3: Partial Fraction Decomposition

We aim to break down the given expression into simpler fractions. For this, we assume:

[tex]\[ \frac{x+12}{(x+1)^2(x-2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2} \][/tex]

Our goal is to find constants [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex].

### Step 4: Combine the fractions on the right-hand side

To combine the partial fractions into a single fraction, the common denominator is [tex]\((x+1)^2(x-2)\)[/tex]:

[tex]\[ \frac{A(x+1)(x-2) + B(x-2) + C(x+1)^2}{(x+1)^2(x-2)} \][/tex]

Equating the numerators from both sides, we get:

[tex]\[ x + 12 = A(x+1)(x-2) + B(x-2) + C(x+1)^2 \][/tex]

### Step 5: Expand and solve for [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex]

Expand the right-hand side:

[tex]\[ x + 12 = A(x^2 - x - 2) + B(x - 2) + C(x^2 + 2x + 1) \][/tex]

[tex]\[ x + 12 = A x^2 - A x - 2 A + B x - 2 B + C x^2 + 2 C x + C \][/tex]

Combine like terms:

[tex]\[ x + 12 = (A + C) x^2 + (-A + B + 2 C) x + (-2A - 2B + C) \][/tex]

### Step 6: Set up equations for the coefficients

By comparing coefficients of [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant term on both sides, we get:

1. [tex]\(A + C = 0\)[/tex]
2. [tex]\(-A + B + 2C = 1\)[/tex]
3. [tex]\(-2A - 2B + C = 12\)[/tex]

### Step 7: Solve the system of equations

From equation (1):

[tex]\[ C = -A \][/tex]

Substitute [tex]\( C = -A \)[/tex] into equations (2) and (3):

[tex]\[ -A + B + 2(-A) = 1 \][/tex]
[tex]\[ -A + B - 2A = 1 \][/tex]
[tex]\[ -3A + B = 1 \quad \text{(4)} \][/tex]

[tex]\[ -2A - 2B - A = 12 \][/tex]
[tex]\[ -2A - 2B - A = 12 \][/tex]
[tex]\[ -2A - 2B + (-A) = 12 \][/tex]
[tex]\[ -2A - 2B - A = 12 \][/tex]
[tex]\[ -3A - 2B = 12 \quad \text{(5)} \][/tex]

Solve the system of linear equations (4) and (5):

From equation (4),

[tex]\[ B = 3A + 1 \quad \text{(6)} \][/tex]

Substitute (6) into (5):

[tex]\[ -3A - 2(3A + 1) = 12 \][/tex]
[tex]\[ -3A - 6A - 2 = 12 \][/tex]
[tex]\[ -9A - 2 = 12 \][/tex]
[tex]\[ -9A = 14 \][/tex]
[tex]\[ A = -\frac{14}{9} \][/tex]

Using [tex]\( A = -\frac{14}{9} \)[/tex],

[tex]\[ C = -A = \frac{14}{9} \][/tex]

From equation (6),

[tex]\[ B = 3A + 1 \][/tex]
[tex]\[ B = 3(-\frac{14}{9}) + 1 \][/tex]
[tex]\[ B = -\frac{42}{9} + 1 \][/tex]
[tex]\[ B = -\frac{42}{9} + \frac{9}{9} \][/tex]
[tex]\[ B = -\frac{33}{9} \][/tex]
[tex]\[ B = -\frac{11}{3} \][/tex]

### Step 8: Construct the partial fractions

Substituting [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] back into our partial fractions:

[tex]\[ \frac{x+12}{(x+1)^2(x-2)} = \frac{-\frac{14}{9}}{x+1} + \frac{-\frac{11}{3}}{(x+1)^2} + \frac{\frac{14}{9}}{x-2} \][/tex]

Simplifying the fractions:

[tex]\[ = -\frac{14}{9(x+1)} - \frac{11}{3(x+1)^2} + \frac{14}{9(x-2)} \][/tex]

Thus, the partial fraction decomposition of [tex]\( \frac{x+12}{(x+1)^2(x-2)} \)[/tex] is:

[tex]\[ \boxed{-\frac{14}{9(x+1)} - \frac{11}{3(x+1)^2} + \frac{14}{9(x-2)}} \][/tex]