Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the solution into several steps:
1. Height of the spray 2 feet away from the sprinkler head:
We use the given formula [tex]\( h(x) = 160x - 16x^2 \)[/tex] to find the height when [tex]\( x = 2 \)[/tex].
[tex]\[ h(2) = 160 \times 2 - 16 \times 2^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(2) = 320 - 16 \times 4 \][/tex]
[tex]\[ h(2) = 320 - 64 \][/tex]
[tex]\[ h(2) = 256 \][/tex]
Therefore, after 2 feet, the height of the spray is [tex]\( \boxed{256} \)[/tex] inches.
2. Distance along the ground where the spray reaches maximum height:
The height function [tex]\( h(x) = 160x - 16x^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( x^2 \)[/tex] is negative). The maximum height occurs at the vertex of the parabola.
For a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], the x-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = -16 \)[/tex] and [tex]\( b = 160 \)[/tex]. Substituting these values in:
[tex]\[ x = -\frac{160}{2 \times -16} \][/tex]
[tex]\[ x = -\frac{160}{-32} \][/tex]
[tex]\[ x = 5 \][/tex]
So, the spray reaches its maximum height at [tex]\( \boxed{5} \)[/tex] feet away from the sprinkler head.
3. Maximum height of the water spray:
We already found the x-coordinate where the maximum height occurs (5 feet away). To find the maximum height:
[tex]\[ h(5) = 160 \times 5 - 16 \times 5^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(5) = 800 - 16 \times 25 \][/tex]
[tex]\[ h(5) = 800 - 400 \][/tex]
[tex]\[ h(5) = 400 \][/tex]
Therefore, the maximum height of the water spray is [tex]\( \boxed{400} \)[/tex] inches.
4. Distance away from the sprinkler head where the water hits the ground again:
The water hits the ground whenever the height [tex]\( h(x) \)[/tex] is zero. Therefore, we solve the equation:
[tex]\[ 0 = 160x - 16x^2 \][/tex]
Factoring out the common terms:
[tex]\[ 0 = x (160 - 16x) \][/tex]
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad 160 - 16x = 0 \][/tex]
Solving [tex]\( 160 - 16x = 0 \)[/tex]:
[tex]\[ 160 = 16x \][/tex]
[tex]\[ x = 10 \][/tex]
Therefore, the water hits the ground again at [tex]\( \boxed{10} \)[/tex] feet away from the sprinkler head.
1. Height of the spray 2 feet away from the sprinkler head:
We use the given formula [tex]\( h(x) = 160x - 16x^2 \)[/tex] to find the height when [tex]\( x = 2 \)[/tex].
[tex]\[ h(2) = 160 \times 2 - 16 \times 2^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(2) = 320 - 16 \times 4 \][/tex]
[tex]\[ h(2) = 320 - 64 \][/tex]
[tex]\[ h(2) = 256 \][/tex]
Therefore, after 2 feet, the height of the spray is [tex]\( \boxed{256} \)[/tex] inches.
2. Distance along the ground where the spray reaches maximum height:
The height function [tex]\( h(x) = 160x - 16x^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( x^2 \)[/tex] is negative). The maximum height occurs at the vertex of the parabola.
For a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], the x-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = -16 \)[/tex] and [tex]\( b = 160 \)[/tex]. Substituting these values in:
[tex]\[ x = -\frac{160}{2 \times -16} \][/tex]
[tex]\[ x = -\frac{160}{-32} \][/tex]
[tex]\[ x = 5 \][/tex]
So, the spray reaches its maximum height at [tex]\( \boxed{5} \)[/tex] feet away from the sprinkler head.
3. Maximum height of the water spray:
We already found the x-coordinate where the maximum height occurs (5 feet away). To find the maximum height:
[tex]\[ h(5) = 160 \times 5 - 16 \times 5^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(5) = 800 - 16 \times 25 \][/tex]
[tex]\[ h(5) = 800 - 400 \][/tex]
[tex]\[ h(5) = 400 \][/tex]
Therefore, the maximum height of the water spray is [tex]\( \boxed{400} \)[/tex] inches.
4. Distance away from the sprinkler head where the water hits the ground again:
The water hits the ground whenever the height [tex]\( h(x) \)[/tex] is zero. Therefore, we solve the equation:
[tex]\[ 0 = 160x - 16x^2 \][/tex]
Factoring out the common terms:
[tex]\[ 0 = x (160 - 16x) \][/tex]
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad 160 - 16x = 0 \][/tex]
Solving [tex]\( 160 - 16x = 0 \)[/tex]:
[tex]\[ 160 = 16x \][/tex]
[tex]\[ x = 10 \][/tex]
Therefore, the water hits the ground again at [tex]\( \boxed{10} \)[/tex] feet away from the sprinkler head.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.