Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's break down the solution into several steps:
1. Height of the spray 2 feet away from the sprinkler head:
We use the given formula [tex]\( h(x) = 160x - 16x^2 \)[/tex] to find the height when [tex]\( x = 2 \)[/tex].
[tex]\[ h(2) = 160 \times 2 - 16 \times 2^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(2) = 320 - 16 \times 4 \][/tex]
[tex]\[ h(2) = 320 - 64 \][/tex]
[tex]\[ h(2) = 256 \][/tex]
Therefore, after 2 feet, the height of the spray is [tex]\( \boxed{256} \)[/tex] inches.
2. Distance along the ground where the spray reaches maximum height:
The height function [tex]\( h(x) = 160x - 16x^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( x^2 \)[/tex] is negative). The maximum height occurs at the vertex of the parabola.
For a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], the x-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = -16 \)[/tex] and [tex]\( b = 160 \)[/tex]. Substituting these values in:
[tex]\[ x = -\frac{160}{2 \times -16} \][/tex]
[tex]\[ x = -\frac{160}{-32} \][/tex]
[tex]\[ x = 5 \][/tex]
So, the spray reaches its maximum height at [tex]\( \boxed{5} \)[/tex] feet away from the sprinkler head.
3. Maximum height of the water spray:
We already found the x-coordinate where the maximum height occurs (5 feet away). To find the maximum height:
[tex]\[ h(5) = 160 \times 5 - 16 \times 5^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(5) = 800 - 16 \times 25 \][/tex]
[tex]\[ h(5) = 800 - 400 \][/tex]
[tex]\[ h(5) = 400 \][/tex]
Therefore, the maximum height of the water spray is [tex]\( \boxed{400} \)[/tex] inches.
4. Distance away from the sprinkler head where the water hits the ground again:
The water hits the ground whenever the height [tex]\( h(x) \)[/tex] is zero. Therefore, we solve the equation:
[tex]\[ 0 = 160x - 16x^2 \][/tex]
Factoring out the common terms:
[tex]\[ 0 = x (160 - 16x) \][/tex]
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad 160 - 16x = 0 \][/tex]
Solving [tex]\( 160 - 16x = 0 \)[/tex]:
[tex]\[ 160 = 16x \][/tex]
[tex]\[ x = 10 \][/tex]
Therefore, the water hits the ground again at [tex]\( \boxed{10} \)[/tex] feet away from the sprinkler head.
1. Height of the spray 2 feet away from the sprinkler head:
We use the given formula [tex]\( h(x) = 160x - 16x^2 \)[/tex] to find the height when [tex]\( x = 2 \)[/tex].
[tex]\[ h(2) = 160 \times 2 - 16 \times 2^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(2) = 320 - 16 \times 4 \][/tex]
[tex]\[ h(2) = 320 - 64 \][/tex]
[tex]\[ h(2) = 256 \][/tex]
Therefore, after 2 feet, the height of the spray is [tex]\( \boxed{256} \)[/tex] inches.
2. Distance along the ground where the spray reaches maximum height:
The height function [tex]\( h(x) = 160x - 16x^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( x^2 \)[/tex] is negative). The maximum height occurs at the vertex of the parabola.
For a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], the x-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = -16 \)[/tex] and [tex]\( b = 160 \)[/tex]. Substituting these values in:
[tex]\[ x = -\frac{160}{2 \times -16} \][/tex]
[tex]\[ x = -\frac{160}{-32} \][/tex]
[tex]\[ x = 5 \][/tex]
So, the spray reaches its maximum height at [tex]\( \boxed{5} \)[/tex] feet away from the sprinkler head.
3. Maximum height of the water spray:
We already found the x-coordinate where the maximum height occurs (5 feet away). To find the maximum height:
[tex]\[ h(5) = 160 \times 5 - 16 \times 5^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(5) = 800 - 16 \times 25 \][/tex]
[tex]\[ h(5) = 800 - 400 \][/tex]
[tex]\[ h(5) = 400 \][/tex]
Therefore, the maximum height of the water spray is [tex]\( \boxed{400} \)[/tex] inches.
4. Distance away from the sprinkler head where the water hits the ground again:
The water hits the ground whenever the height [tex]\( h(x) \)[/tex] is zero. Therefore, we solve the equation:
[tex]\[ 0 = 160x - 16x^2 \][/tex]
Factoring out the common terms:
[tex]\[ 0 = x (160 - 16x) \][/tex]
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad 160 - 16x = 0 \][/tex]
Solving [tex]\( 160 - 16x = 0 \)[/tex]:
[tex]\[ 160 = 16x \][/tex]
[tex]\[ x = 10 \][/tex]
Therefore, the water hits the ground again at [tex]\( \boxed{10} \)[/tex] feet away from the sprinkler head.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.