Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's break down the solution into several steps:
1. Height of the spray 2 feet away from the sprinkler head:
We use the given formula [tex]\( h(x) = 160x - 16x^2 \)[/tex] to find the height when [tex]\( x = 2 \)[/tex].
[tex]\[ h(2) = 160 \times 2 - 16 \times 2^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(2) = 320 - 16 \times 4 \][/tex]
[tex]\[ h(2) = 320 - 64 \][/tex]
[tex]\[ h(2) = 256 \][/tex]
Therefore, after 2 feet, the height of the spray is [tex]\( \boxed{256} \)[/tex] inches.
2. Distance along the ground where the spray reaches maximum height:
The height function [tex]\( h(x) = 160x - 16x^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( x^2 \)[/tex] is negative). The maximum height occurs at the vertex of the parabola.
For a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], the x-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = -16 \)[/tex] and [tex]\( b = 160 \)[/tex]. Substituting these values in:
[tex]\[ x = -\frac{160}{2 \times -16} \][/tex]
[tex]\[ x = -\frac{160}{-32} \][/tex]
[tex]\[ x = 5 \][/tex]
So, the spray reaches its maximum height at [tex]\( \boxed{5} \)[/tex] feet away from the sprinkler head.
3. Maximum height of the water spray:
We already found the x-coordinate where the maximum height occurs (5 feet away). To find the maximum height:
[tex]\[ h(5) = 160 \times 5 - 16 \times 5^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(5) = 800 - 16 \times 25 \][/tex]
[tex]\[ h(5) = 800 - 400 \][/tex]
[tex]\[ h(5) = 400 \][/tex]
Therefore, the maximum height of the water spray is [tex]\( \boxed{400} \)[/tex] inches.
4. Distance away from the sprinkler head where the water hits the ground again:
The water hits the ground whenever the height [tex]\( h(x) \)[/tex] is zero. Therefore, we solve the equation:
[tex]\[ 0 = 160x - 16x^2 \][/tex]
Factoring out the common terms:
[tex]\[ 0 = x (160 - 16x) \][/tex]
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad 160 - 16x = 0 \][/tex]
Solving [tex]\( 160 - 16x = 0 \)[/tex]:
[tex]\[ 160 = 16x \][/tex]
[tex]\[ x = 10 \][/tex]
Therefore, the water hits the ground again at [tex]\( \boxed{10} \)[/tex] feet away from the sprinkler head.
1. Height of the spray 2 feet away from the sprinkler head:
We use the given formula [tex]\( h(x) = 160x - 16x^2 \)[/tex] to find the height when [tex]\( x = 2 \)[/tex].
[tex]\[ h(2) = 160 \times 2 - 16 \times 2^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(2) = 320 - 16 \times 4 \][/tex]
[tex]\[ h(2) = 320 - 64 \][/tex]
[tex]\[ h(2) = 256 \][/tex]
Therefore, after 2 feet, the height of the spray is [tex]\( \boxed{256} \)[/tex] inches.
2. Distance along the ground where the spray reaches maximum height:
The height function [tex]\( h(x) = 160x - 16x^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( x^2 \)[/tex] is negative). The maximum height occurs at the vertex of the parabola.
For a quadratic equation in the form [tex]\( ax^2 + bx + c \)[/tex], the x-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = -16 \)[/tex] and [tex]\( b = 160 \)[/tex]. Substituting these values in:
[tex]\[ x = -\frac{160}{2 \times -16} \][/tex]
[tex]\[ x = -\frac{160}{-32} \][/tex]
[tex]\[ x = 5 \][/tex]
So, the spray reaches its maximum height at [tex]\( \boxed{5} \)[/tex] feet away from the sprinkler head.
3. Maximum height of the water spray:
We already found the x-coordinate where the maximum height occurs (5 feet away). To find the maximum height:
[tex]\[ h(5) = 160 \times 5 - 16 \times 5^2 \][/tex]
Simplifying inside the equation:
[tex]\[ h(5) = 800 - 16 \times 25 \][/tex]
[tex]\[ h(5) = 800 - 400 \][/tex]
[tex]\[ h(5) = 400 \][/tex]
Therefore, the maximum height of the water spray is [tex]\( \boxed{400} \)[/tex] inches.
4. Distance away from the sprinkler head where the water hits the ground again:
The water hits the ground whenever the height [tex]\( h(x) \)[/tex] is zero. Therefore, we solve the equation:
[tex]\[ 0 = 160x - 16x^2 \][/tex]
Factoring out the common terms:
[tex]\[ 0 = x (160 - 16x) \][/tex]
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad 160 - 16x = 0 \][/tex]
Solving [tex]\( 160 - 16x = 0 \)[/tex]:
[tex]\[ 160 = 16x \][/tex]
[tex]\[ x = 10 \][/tex]
Therefore, the water hits the ground again at [tex]\( \boxed{10} \)[/tex] feet away from the sprinkler head.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.