At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the function [tex]\( f(x) = 1 - \sqrt{x - 1} \)[/tex] crosses the x-axis and why, let's analyze the function step-by-step.
1. Domain and Initial Point:
- The function [tex]\( f(x) = 1 - \sqrt{x - 1} \)[/tex] is defined for [tex]\( x \geq 1 \)[/tex], because the expression under the square root, [tex]\( x - 1 \)[/tex], must be non-negative.
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1 - \sqrt{1 - 1} = 1 - 0 = 1. \][/tex]
- Therefore, the function begins at the point [tex]\( (1, 1) \)[/tex].
2. Behavior as [tex]\( x \)[/tex] Increases:
- As [tex]\( x \)[/tex] increases beyond 1, the value [tex]\( \sqrt{x - 1} \)[/tex] also increases.
- Since [tex]\( \sqrt{x - 1} \)[/tex] is subtracted from 1, [tex]\( f(x) \)[/tex] will decrease as [tex]\( x \)[/tex] increases.
3. Determining the x-axis Crossing:
- To find if and where the function crosses the x-axis (i.e., where [tex]\( f(x) = 0 \)[/tex]):
[tex]\[ 1 - \sqrt{x - 1} = 0. \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ \sqrt{x - 1} = 1, \][/tex]
[tex]\[ x - 1 = 1, \][/tex]
[tex]\[ x = 2. \][/tex]
- Therefore, the function [tex]\( f(x) = 1 - \sqrt{x - 1} \)[/tex] crosses the x-axis at [tex]\( x = 2 \)[/tex], giving us the point [tex]\( (2, 0) \)[/tex].
4. Conclusion:
- The function starts at [tex]\( (1, 1) \)[/tex] and decreases as [tex]\( x \)[/tex] increases.
- It crosses the x-axis at [tex]\( (2, 0) \)[/tex].
Given the analysis above, we can conclude:
Yes, because it will begin at [tex]\((1,1)\)[/tex] and decrease without bound.
1. Domain and Initial Point:
- The function [tex]\( f(x) = 1 - \sqrt{x - 1} \)[/tex] is defined for [tex]\( x \geq 1 \)[/tex], because the expression under the square root, [tex]\( x - 1 \)[/tex], must be non-negative.
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1 - \sqrt{1 - 1} = 1 - 0 = 1. \][/tex]
- Therefore, the function begins at the point [tex]\( (1, 1) \)[/tex].
2. Behavior as [tex]\( x \)[/tex] Increases:
- As [tex]\( x \)[/tex] increases beyond 1, the value [tex]\( \sqrt{x - 1} \)[/tex] also increases.
- Since [tex]\( \sqrt{x - 1} \)[/tex] is subtracted from 1, [tex]\( f(x) \)[/tex] will decrease as [tex]\( x \)[/tex] increases.
3. Determining the x-axis Crossing:
- To find if and where the function crosses the x-axis (i.e., where [tex]\( f(x) = 0 \)[/tex]):
[tex]\[ 1 - \sqrt{x - 1} = 0. \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ \sqrt{x - 1} = 1, \][/tex]
[tex]\[ x - 1 = 1, \][/tex]
[tex]\[ x = 2. \][/tex]
- Therefore, the function [tex]\( f(x) = 1 - \sqrt{x - 1} \)[/tex] crosses the x-axis at [tex]\( x = 2 \)[/tex], giving us the point [tex]\( (2, 0) \)[/tex].
4. Conclusion:
- The function starts at [tex]\( (1, 1) \)[/tex] and decreases as [tex]\( x \)[/tex] increases.
- It crosses the x-axis at [tex]\( (2, 0) \)[/tex].
Given the analysis above, we can conclude:
Yes, because it will begin at [tex]\((1,1)\)[/tex] and decrease without bound.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.