Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solve the system of equations below by graphing both equations on paper. What is the solution?

[tex]\[
\begin{array}{l}
y = 2x - 3 \\
y = -2x + 5
\end{array}
\][/tex]

A. [tex]\((-2, 5)\)[/tex]
B. [tex]\((-2, -7)\)[/tex]
C. [tex]\((2, -3)\)[/tex]
D. [tex]\((2, 1)\)[/tex]


Sagot :

To solve the system of equations [tex]\(\begin{array}{l} y = 2x - 3 \\ y = -2x + 5 \end{array}\)[/tex] by graphing, follow these steps:

1. Graph the first equation [tex]\(y = 2x - 3\)[/tex]:
- Identify the y-intercept, which is the point where [tex]\(x = 0\)[/tex]. For the equation [tex]\(y = 2x - 3\)[/tex], the y-intercept is [tex]\((0, -3)\)[/tex].
- Identify another point by choosing a convenient value for [tex]\(x\)[/tex]. For example, if [tex]\(x = 1\)[/tex],
[tex]\[ y = 2(1) - 3 = 2 - 3 = -1 \][/tex]
So, another point is [tex]\((1, -1)\)[/tex].
- Plot the points [tex]\((0, -3)\)[/tex] and [tex]\((1, -1)\)[/tex] on the graph and draw a line through them.

2. Graph the second equation [tex]\(y = -2x + 5\)[/tex]:
- Identify the y-intercept, which is the point where [tex]\(x = 0\)[/tex]. For the equation [tex]\(y = -2x + 5\)[/tex], the y-intercept is [tex]\((0, 5)\)[/tex].
- Identify another point by choosing a convenient value for [tex]\(x\)[/tex]. For example, if [tex]\(x = 1\)[/tex],
[tex]\[ y = -2(1) + 5 = -2 + 5 = 3 \][/tex]
So, another point is [tex]\((1, 3)\)[/tex].
- Plot the points [tex]\((0, 5)\)[/tex] and [tex]\((1, 3)\)[/tex] on the graph and draw a line through them.

3. Find the point of intersection:
- The point where the two lines intersect is the solution to the system of equations.

Upon graphing both lines, you'll see that they intersect at the point [tex]\((2, 1)\)[/tex].

Thus, the solution to the system of equations is:
[tex]\[ \boxed{(2, 1)} \][/tex]

The solution matches option D: [tex]\((2, 1)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.