Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the absolute maximum of the function [tex]\( f(x) = x^2 - 12 \)[/tex] on the interval [tex]\([-3, 4]\)[/tex], follow these steps:
1. Identify the critical points:
- You need to find where the derivative of the function [tex]\(f\)[/tex] is zero or does not exist within the interval.
- The derivative of [tex]\( f(x) \)[/tex] is [tex]\( f'(x) = 2x \)[/tex].
- Solve [tex]\( 2x = 0 \)[/tex] to find the critical points:
[tex]\[ 2x = 0 \implies x = 0. \][/tex]
- Check if the critical point lies within the interval [tex]\([-3, 4]\)[/tex]. In this case, [tex]\( x = 0 \)[/tex] is within the interval.
2. Evaluate the function at the endpoints and the critical points:
- Evaluate [tex]\(f(x)\)[/tex] at the critical point [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = 0^2 - 12 = -12. \][/tex]
- Evaluate [tex]\(f(x)\)[/tex] at the endpoints [tex]\(x = -3\)[/tex] and [tex]\(x = 4\)[/tex]:
[tex]\[ f(-3) = (-3)^2 - 12 = 9 - 12 = -3, \][/tex]
[tex]\[ f(4) = 4^2 - 12 = 16 - 12 = 4. \][/tex]
3. Compare the values from the endpoints and critical points:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = -12 \)[/tex].
- At [tex]\( x = -3 \)[/tex], [tex]\( f(-3) = -3 \)[/tex].
- At [tex]\( x = 4 \)[/tex], [tex]\( f(4) = 4 \)[/tex].
The highest value among these evaluations determines the absolute maximum.
4. Conclusion:
- The absolute maximum value of [tex]\( f \)[/tex] on the interval [tex]\([-3, 4]\)[/tex] is [tex]\( 4 \)[/tex] at [tex]\( x = 4 \)[/tex].
Therefore, the correct choice is:
A. The absolute maximum is [tex]\(4\)[/tex] at [tex]\( x = 4 \)[/tex].
1. Identify the critical points:
- You need to find where the derivative of the function [tex]\(f\)[/tex] is zero or does not exist within the interval.
- The derivative of [tex]\( f(x) \)[/tex] is [tex]\( f'(x) = 2x \)[/tex].
- Solve [tex]\( 2x = 0 \)[/tex] to find the critical points:
[tex]\[ 2x = 0 \implies x = 0. \][/tex]
- Check if the critical point lies within the interval [tex]\([-3, 4]\)[/tex]. In this case, [tex]\( x = 0 \)[/tex] is within the interval.
2. Evaluate the function at the endpoints and the critical points:
- Evaluate [tex]\(f(x)\)[/tex] at the critical point [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = 0^2 - 12 = -12. \][/tex]
- Evaluate [tex]\(f(x)\)[/tex] at the endpoints [tex]\(x = -3\)[/tex] and [tex]\(x = 4\)[/tex]:
[tex]\[ f(-3) = (-3)^2 - 12 = 9 - 12 = -3, \][/tex]
[tex]\[ f(4) = 4^2 - 12 = 16 - 12 = 4. \][/tex]
3. Compare the values from the endpoints and critical points:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = -12 \)[/tex].
- At [tex]\( x = -3 \)[/tex], [tex]\( f(-3) = -3 \)[/tex].
- At [tex]\( x = 4 \)[/tex], [tex]\( f(4) = 4 \)[/tex].
The highest value among these evaluations determines the absolute maximum.
4. Conclusion:
- The absolute maximum value of [tex]\( f \)[/tex] on the interval [tex]\([-3, 4]\)[/tex] is [tex]\( 4 \)[/tex] at [tex]\( x = 4 \)[/tex].
Therefore, the correct choice is:
A. The absolute maximum is [tex]\(4\)[/tex] at [tex]\( x = 4 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.