Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the absolute maximum of the function [tex]\( f(x) = x^2 - 12 \)[/tex] on the interval [tex]\([-3, 4]\)[/tex], follow these steps:
1. Identify the critical points:
- You need to find where the derivative of the function [tex]\(f\)[/tex] is zero or does not exist within the interval.
- The derivative of [tex]\( f(x) \)[/tex] is [tex]\( f'(x) = 2x \)[/tex].
- Solve [tex]\( 2x = 0 \)[/tex] to find the critical points:
[tex]\[ 2x = 0 \implies x = 0. \][/tex]
- Check if the critical point lies within the interval [tex]\([-3, 4]\)[/tex]. In this case, [tex]\( x = 0 \)[/tex] is within the interval.
2. Evaluate the function at the endpoints and the critical points:
- Evaluate [tex]\(f(x)\)[/tex] at the critical point [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = 0^2 - 12 = -12. \][/tex]
- Evaluate [tex]\(f(x)\)[/tex] at the endpoints [tex]\(x = -3\)[/tex] and [tex]\(x = 4\)[/tex]:
[tex]\[ f(-3) = (-3)^2 - 12 = 9 - 12 = -3, \][/tex]
[tex]\[ f(4) = 4^2 - 12 = 16 - 12 = 4. \][/tex]
3. Compare the values from the endpoints and critical points:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = -12 \)[/tex].
- At [tex]\( x = -3 \)[/tex], [tex]\( f(-3) = -3 \)[/tex].
- At [tex]\( x = 4 \)[/tex], [tex]\( f(4) = 4 \)[/tex].
The highest value among these evaluations determines the absolute maximum.
4. Conclusion:
- The absolute maximum value of [tex]\( f \)[/tex] on the interval [tex]\([-3, 4]\)[/tex] is [tex]\( 4 \)[/tex] at [tex]\( x = 4 \)[/tex].
Therefore, the correct choice is:
A. The absolute maximum is [tex]\(4\)[/tex] at [tex]\( x = 4 \)[/tex].
1. Identify the critical points:
- You need to find where the derivative of the function [tex]\(f\)[/tex] is zero or does not exist within the interval.
- The derivative of [tex]\( f(x) \)[/tex] is [tex]\( f'(x) = 2x \)[/tex].
- Solve [tex]\( 2x = 0 \)[/tex] to find the critical points:
[tex]\[ 2x = 0 \implies x = 0. \][/tex]
- Check if the critical point lies within the interval [tex]\([-3, 4]\)[/tex]. In this case, [tex]\( x = 0 \)[/tex] is within the interval.
2. Evaluate the function at the endpoints and the critical points:
- Evaluate [tex]\(f(x)\)[/tex] at the critical point [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = 0^2 - 12 = -12. \][/tex]
- Evaluate [tex]\(f(x)\)[/tex] at the endpoints [tex]\(x = -3\)[/tex] and [tex]\(x = 4\)[/tex]:
[tex]\[ f(-3) = (-3)^2 - 12 = 9 - 12 = -3, \][/tex]
[tex]\[ f(4) = 4^2 - 12 = 16 - 12 = 4. \][/tex]
3. Compare the values from the endpoints and critical points:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = -12 \)[/tex].
- At [tex]\( x = -3 \)[/tex], [tex]\( f(-3) = -3 \)[/tex].
- At [tex]\( x = 4 \)[/tex], [tex]\( f(4) = 4 \)[/tex].
The highest value among these evaluations determines the absolute maximum.
4. Conclusion:
- The absolute maximum value of [tex]\( f \)[/tex] on the interval [tex]\([-3, 4]\)[/tex] is [tex]\( 4 \)[/tex] at [tex]\( x = 4 \)[/tex].
Therefore, the correct choice is:
A. The absolute maximum is [tex]\(4\)[/tex] at [tex]\( x = 4 \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.