Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Which of the following could be an example of a function with a range [tex]\((- \infty, a]\)[/tex] and a domain [tex]\([b, \infty)\)[/tex] where [tex]\(a \ \textgreater \ 0\)[/tex] and [tex]\(b \ \textgreater \ 0\)[/tex]?

A. [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex]

B. [tex]\( f(x) = -\sqrt[3]{x+a} - b \)[/tex]

C. [tex]\( f(x) = \sqrt[3]{(x+b)} - a \)[/tex]

D. [tex]\( f(x) = \sqrt{x-a} + b \)[/tex]


Sagot :

To determine which function has a range [tex]\((- \infty, a]\)[/tex] and a domain [tex]\([b, \infty)\)[/tex] where [tex]\(a > 0\)[/tex] and [tex]\(b > 0\)[/tex], let's analyze each option in detail:

Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex]

1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - b \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq b\)[/tex].
- Hence, the domain is [tex]\([b, \infty)\)[/tex].

2. Range:
- Since [tex]\(\sqrt{x-b}\)[/tex] is always non-negative, [tex]\(-\sqrt{x-b}\)[/tex] is always non-positive.
- Therefore, [tex]\(-\sqrt{x-b} \leq 0\)[/tex].
- Adding [tex]\(a\)[/tex] to the inequality, we get [tex]\(-\sqrt{x-b} + a \leq a\)[/tex].
- Hence, the range is [tex]\((-\infty, a]\)[/tex].

We see that this satisfies the conditions.

Option B: [tex]\( f(x) = -\sqrt[3]{x+a} - b \)[/tex]

1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].

2. Range:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] can take any real number.
- Therefore, [tex]\(-\sqrt[3]{x+a}\)[/tex] can also take any real number.
- Hence, [tex]\( -\sqrt[3]{x+a} - b \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].

This does not satisfy the conditions.

Option C: [tex]\( f(x) = \sqrt[3]{x+b} - a \)[/tex]

1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].

2. Range:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] can take any real number.
- Therefore, [tex]\(\sqrt[3]{x+b}\)[/tex] can also take any real number.
- Hence, [tex]\(\sqrt[3]{x+b} - a \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].

This does not satisfy the conditions.

Option D: [tex]\( f(x) = \sqrt{x-a} + b \)[/tex]

1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - a \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq a\)[/tex].
- Hence, the domain is [tex]\([a, \infty)\)[/tex].

2. Range:
- Since [tex]\(\sqrt{x-a}\)[/tex] is always non-negative, [tex]\(\sqrt{x-a}\)[/tex] is always non-negative.
- Therefore, [tex]\(\sqrt{x-a} \geq 0\)[/tex].
- Adding [tex]\(b\)[/tex] to the inequality, we get [tex]\(\sqrt{x-a} + b \geq b\)[/tex].
- Hence, the range is [tex]\([b, \infty)\)[/tex].

This does not satisfy the conditions.

After analyzing all options, we conclude that the correct function that has a range of [tex]\((-\infty, a]\)[/tex] and a domain of [tex]\([b, \infty)\)[/tex] is:

Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex].

Thus, the correct answer is:
```
1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.