At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which function has a range [tex]\((- \infty, a]\)[/tex] and a domain [tex]\([b, \infty)\)[/tex] where [tex]\(a > 0\)[/tex] and [tex]\(b > 0\)[/tex], let's analyze each option in detail:
Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex]
1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - b \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq b\)[/tex].
- Hence, the domain is [tex]\([b, \infty)\)[/tex].
2. Range:
- Since [tex]\(\sqrt{x-b}\)[/tex] is always non-negative, [tex]\(-\sqrt{x-b}\)[/tex] is always non-positive.
- Therefore, [tex]\(-\sqrt{x-b} \leq 0\)[/tex].
- Adding [tex]\(a\)[/tex] to the inequality, we get [tex]\(-\sqrt{x-b} + a \leq a\)[/tex].
- Hence, the range is [tex]\((-\infty, a]\)[/tex].
We see that this satisfies the conditions.
Option B: [tex]\( f(x) = -\sqrt[3]{x+a} - b \)[/tex]
1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].
2. Range:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] can take any real number.
- Therefore, [tex]\(-\sqrt[3]{x+a}\)[/tex] can also take any real number.
- Hence, [tex]\( -\sqrt[3]{x+a} - b \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].
This does not satisfy the conditions.
Option C: [tex]\( f(x) = \sqrt[3]{x+b} - a \)[/tex]
1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].
2. Range:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] can take any real number.
- Therefore, [tex]\(\sqrt[3]{x+b}\)[/tex] can also take any real number.
- Hence, [tex]\(\sqrt[3]{x+b} - a \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].
This does not satisfy the conditions.
Option D: [tex]\( f(x) = \sqrt{x-a} + b \)[/tex]
1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - a \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq a\)[/tex].
- Hence, the domain is [tex]\([a, \infty)\)[/tex].
2. Range:
- Since [tex]\(\sqrt{x-a}\)[/tex] is always non-negative, [tex]\(\sqrt{x-a}\)[/tex] is always non-negative.
- Therefore, [tex]\(\sqrt{x-a} \geq 0\)[/tex].
- Adding [tex]\(b\)[/tex] to the inequality, we get [tex]\(\sqrt{x-a} + b \geq b\)[/tex].
- Hence, the range is [tex]\([b, \infty)\)[/tex].
This does not satisfy the conditions.
After analyzing all options, we conclude that the correct function that has a range of [tex]\((-\infty, a]\)[/tex] and a domain of [tex]\([b, \infty)\)[/tex] is:
Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex].
Thus, the correct answer is:
```
1
Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex]
1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - b \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq b\)[/tex].
- Hence, the domain is [tex]\([b, \infty)\)[/tex].
2. Range:
- Since [tex]\(\sqrt{x-b}\)[/tex] is always non-negative, [tex]\(-\sqrt{x-b}\)[/tex] is always non-positive.
- Therefore, [tex]\(-\sqrt{x-b} \leq 0\)[/tex].
- Adding [tex]\(a\)[/tex] to the inequality, we get [tex]\(-\sqrt{x-b} + a \leq a\)[/tex].
- Hence, the range is [tex]\((-\infty, a]\)[/tex].
We see that this satisfies the conditions.
Option B: [tex]\( f(x) = -\sqrt[3]{x+a} - b \)[/tex]
1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].
2. Range:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] can take any real number.
- Therefore, [tex]\(-\sqrt[3]{x+a}\)[/tex] can also take any real number.
- Hence, [tex]\( -\sqrt[3]{x+a} - b \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].
This does not satisfy the conditions.
Option C: [tex]\( f(x) = \sqrt[3]{x+b} - a \)[/tex]
1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].
2. Range:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] can take any real number.
- Therefore, [tex]\(\sqrt[3]{x+b}\)[/tex] can also take any real number.
- Hence, [tex]\(\sqrt[3]{x+b} - a \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].
This does not satisfy the conditions.
Option D: [tex]\( f(x) = \sqrt{x-a} + b \)[/tex]
1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - a \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq a\)[/tex].
- Hence, the domain is [tex]\([a, \infty)\)[/tex].
2. Range:
- Since [tex]\(\sqrt{x-a}\)[/tex] is always non-negative, [tex]\(\sqrt{x-a}\)[/tex] is always non-negative.
- Therefore, [tex]\(\sqrt{x-a} \geq 0\)[/tex].
- Adding [tex]\(b\)[/tex] to the inequality, we get [tex]\(\sqrt{x-a} + b \geq b\)[/tex].
- Hence, the range is [tex]\([b, \infty)\)[/tex].
This does not satisfy the conditions.
After analyzing all options, we conclude that the correct function that has a range of [tex]\((-\infty, a]\)[/tex] and a domain of [tex]\([b, \infty)\)[/tex] is:
Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex].
Thus, the correct answer is:
```
1
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.