Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which function has a range [tex]\((- \infty, a]\)[/tex] and a domain [tex]\([b, \infty)\)[/tex] where [tex]\(a > 0\)[/tex] and [tex]\(b > 0\)[/tex], let's analyze each option in detail:
Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex]
1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - b \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq b\)[/tex].
- Hence, the domain is [tex]\([b, \infty)\)[/tex].
2. Range:
- Since [tex]\(\sqrt{x-b}\)[/tex] is always non-negative, [tex]\(-\sqrt{x-b}\)[/tex] is always non-positive.
- Therefore, [tex]\(-\sqrt{x-b} \leq 0\)[/tex].
- Adding [tex]\(a\)[/tex] to the inequality, we get [tex]\(-\sqrt{x-b} + a \leq a\)[/tex].
- Hence, the range is [tex]\((-\infty, a]\)[/tex].
We see that this satisfies the conditions.
Option B: [tex]\( f(x) = -\sqrt[3]{x+a} - b \)[/tex]
1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].
2. Range:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] can take any real number.
- Therefore, [tex]\(-\sqrt[3]{x+a}\)[/tex] can also take any real number.
- Hence, [tex]\( -\sqrt[3]{x+a} - b \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].
This does not satisfy the conditions.
Option C: [tex]\( f(x) = \sqrt[3]{x+b} - a \)[/tex]
1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].
2. Range:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] can take any real number.
- Therefore, [tex]\(\sqrt[3]{x+b}\)[/tex] can also take any real number.
- Hence, [tex]\(\sqrt[3]{x+b} - a \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].
This does not satisfy the conditions.
Option D: [tex]\( f(x) = \sqrt{x-a} + b \)[/tex]
1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - a \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq a\)[/tex].
- Hence, the domain is [tex]\([a, \infty)\)[/tex].
2. Range:
- Since [tex]\(\sqrt{x-a}\)[/tex] is always non-negative, [tex]\(\sqrt{x-a}\)[/tex] is always non-negative.
- Therefore, [tex]\(\sqrt{x-a} \geq 0\)[/tex].
- Adding [tex]\(b\)[/tex] to the inequality, we get [tex]\(\sqrt{x-a} + b \geq b\)[/tex].
- Hence, the range is [tex]\([b, \infty)\)[/tex].
This does not satisfy the conditions.
After analyzing all options, we conclude that the correct function that has a range of [tex]\((-\infty, a]\)[/tex] and a domain of [tex]\([b, \infty)\)[/tex] is:
Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex].
Thus, the correct answer is:
```
1
Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex]
1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - b \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq b\)[/tex].
- Hence, the domain is [tex]\([b, \infty)\)[/tex].
2. Range:
- Since [tex]\(\sqrt{x-b}\)[/tex] is always non-negative, [tex]\(-\sqrt{x-b}\)[/tex] is always non-positive.
- Therefore, [tex]\(-\sqrt{x-b} \leq 0\)[/tex].
- Adding [tex]\(a\)[/tex] to the inequality, we get [tex]\(-\sqrt{x-b} + a \leq a\)[/tex].
- Hence, the range is [tex]\((-\infty, a]\)[/tex].
We see that this satisfies the conditions.
Option B: [tex]\( f(x) = -\sqrt[3]{x+a} - b \)[/tex]
1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].
2. Range:
- The cube root function [tex]\(\sqrt[3]{x+a}\)[/tex] can take any real number.
- Therefore, [tex]\(-\sqrt[3]{x+a}\)[/tex] can also take any real number.
- Hence, [tex]\( -\sqrt[3]{x+a} - b \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].
This does not satisfy the conditions.
Option C: [tex]\( f(x) = \sqrt[3]{x+b} - a \)[/tex]
1. Domain:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] is defined for all real numbers.
- Hence, the domain is [tex]\((-\infty, \infty)\)[/tex].
2. Range:
- The cube root function [tex]\(\sqrt[3]{x+b}\)[/tex] can take any real number.
- Therefore, [tex]\(\sqrt[3]{x+b}\)[/tex] can also take any real number.
- Hence, [tex]\(\sqrt[3]{x+b} - a \)[/tex] can take any real number as well.
- The range is [tex]\((-\infty, \infty)\)[/tex].
This does not satisfy the conditions.
Option D: [tex]\( f(x) = \sqrt{x-a} + b \)[/tex]
1. Domain:
- The expression inside the square root must be non-negative for real numbers.
- Therefore, [tex]\(x - a \geq 0\)[/tex].
- Solving for [tex]\(x\)[/tex], we get [tex]\(x \geq a\)[/tex].
- Hence, the domain is [tex]\([a, \infty)\)[/tex].
2. Range:
- Since [tex]\(\sqrt{x-a}\)[/tex] is always non-negative, [tex]\(\sqrt{x-a}\)[/tex] is always non-negative.
- Therefore, [tex]\(\sqrt{x-a} \geq 0\)[/tex].
- Adding [tex]\(b\)[/tex] to the inequality, we get [tex]\(\sqrt{x-a} + b \geq b\)[/tex].
- Hence, the range is [tex]\([b, \infty)\)[/tex].
This does not satisfy the conditions.
After analyzing all options, we conclude that the correct function that has a range of [tex]\((-\infty, a]\)[/tex] and a domain of [tex]\([b, \infty)\)[/tex] is:
Option A: [tex]\( f(x) = -\sqrt{x-b} + a \)[/tex].
Thus, the correct answer is:
```
1
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.