Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

The table shows information about four objects resting at the top of a hill.

Four Objects at Rest on a Hill

\begin{tabular}{|l|l|l|}
\hline
Object & Mass [tex]$(kg)$[/tex] & Potential Energy [tex]$(J)$[/tex] \\
\hline
W & 50 & 980 \\
\hline
[tex]$X$[/tex] & 35 & 1,029 \\
\hline
[tex]$Y$[/tex] & 62 & 1,519 \\
\hline
[tex]$Z$[/tex] & 24 & 1,176 \\
\hline
\end{tabular}

Which object is on the tallest hill?

A. W
B. [tex]$X$[/tex]
C. [tex]$Y$[/tex]
D. [tex]$Z$[/tex]

Sagot :

To determine which object is on the tallest hill, we need to calculate the height at which each object is located. This can be done using the formula for gravitational potential energy:

[tex]\[ PE = m \cdot g \cdot h \][/tex]

Where:
- [tex]\(PE\)[/tex] is the potential energy,
- [tex]\(m\)[/tex] is the mass,
- [tex]\(g\)[/tex] is the acceleration due to gravity ([tex]\(9.8 \, \text{m/s}^2\)[/tex]),
- [tex]\(h\)[/tex] is the height.

We can rearrange this formula to solve for height:

[tex]\[ h = \frac{PE}{m \cdot g} \][/tex]

Let's calculate the heights for each object using the provided data:

1. Object W:
[tex]\[ PE_W = 980 \, \text{J}, \quad m_W = 50 \, \text{kg} \][/tex]
[tex]\[ h_W = \frac{980}{50 \cdot 9.8} \approx 2.00 \, \text{m} \][/tex]

2. Object X:
[tex]\[ PE_X = 1029 \, \text{J}, \quad m_X = 35 \, \text{kg} \][/tex]
[tex]\[ h_X = \frac{1029}{35 \cdot 9.8} \approx 3.00 \, \text{m} \][/tex]

3. Object Y:
[tex]\[ PE_Y = 1519 \, \text{J}, \quad m_Y = 62 \, \text{kg} \][/tex]
[tex]\[ h_Y = \frac{1519}{62 \cdot 9.8} \approx 2.50 \, \text{m} \][/tex]

4. Object Z:
[tex]\[ PE_Z = 1176 \, \text{J}, \quad m_Z = 24 \, \text{kg} \][/tex]
[tex]\[ h_Z = \frac{1176}{24 \cdot 9.8} \approx 5.00 \, \text{m} \][/tex]

From these calculations, we can see that the heights for the objects are as follows:
- h_W = 2.00 meters
- h_X = 3.00 meters
- h_Y = 2.50 meters
- h_Z = 5.00 meters

The object on the tallest hill is [tex]\(Z\)[/tex], which is at a height of 5.00 meters. Therefore, the object on the tallest hill is [tex]\( \boxed{Z} \)[/tex].