Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's consider the problem of finding the height of a right pyramid with a square base, given the volume and the length of the base edge.
### Step-by-Step Solution:
1. Volume Formula for a Pyramid:
The volume [tex]\( V \)[/tex] of a right pyramid with a square base is given by:
[tex]\[ V = \frac{1}{3} \times \text{base\_area} \times \text{height} \][/tex]
2. Area of the Square Base:
Since the base is a square with edge length [tex]\( y \)[/tex], the area of the base ([tex]\(\text{base\_area}\)[/tex]) is:
[tex]\[ \text{base\_area} = y^2 \][/tex]
3. Substitute Base Area into Volume Formula:
Substitute [tex]\( y^2 \)[/tex] for the base area in the volume formula:
[tex]\[ V = \frac{1}{3} \times y^2 \times \text{height} \][/tex]
4. Solve for Height:
We need to solve for the height ([tex]\(\text{height}\)[/tex]). Rearrange the equation to isolate height on one side:
[tex]\[ \text{height} = \frac{3V}{y^2} \][/tex]
Thus, the expression that represents the height of the pyramid is:
[tex]\[ \boxed{\frac{3V}{y^2}} \][/tex]
So, among the given choices, the correct option is:
[tex]\[ \frac{3 V}{y^2} \text{ units} \][/tex]
### Step-by-Step Solution:
1. Volume Formula for a Pyramid:
The volume [tex]\( V \)[/tex] of a right pyramid with a square base is given by:
[tex]\[ V = \frac{1}{3} \times \text{base\_area} \times \text{height} \][/tex]
2. Area of the Square Base:
Since the base is a square with edge length [tex]\( y \)[/tex], the area of the base ([tex]\(\text{base\_area}\)[/tex]) is:
[tex]\[ \text{base\_area} = y^2 \][/tex]
3. Substitute Base Area into Volume Formula:
Substitute [tex]\( y^2 \)[/tex] for the base area in the volume formula:
[tex]\[ V = \frac{1}{3} \times y^2 \times \text{height} \][/tex]
4. Solve for Height:
We need to solve for the height ([tex]\(\text{height}\)[/tex]). Rearrange the equation to isolate height on one side:
[tex]\[ \text{height} = \frac{3V}{y^2} \][/tex]
Thus, the expression that represents the height of the pyramid is:
[tex]\[ \boxed{\frac{3V}{y^2}} \][/tex]
So, among the given choices, the correct option is:
[tex]\[ \frac{3 V}{y^2} \text{ units} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.