Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which expression has the like terms grouped together, let's carefully examine each given option:
1. Option 1: [tex]\( 10 x^2 y + 2 x y^2 - 4 x^2 - 4 x^2 y \)[/tex]
- This is the original expression without any grouping of like terms.
2. Option 2: [tex]\( \left[(-4 x^2) + (-4 x^2 y) + 10 x^2 y\right] + 2 x y^2 \)[/tex]
- Grouping within the brackets shows an attempt to combine [tex]\((-4 x^2)\)[/tex], [tex]\((-4 x^2 y)\)[/tex], and [tex]\(10 x^2 y\)[/tex]. However, the terms inside and outside the brackets aren't consistently grouped with like terms.
3. Option 3: [tex]\( 10 x^2 y + 2 x y^2 + \left[(-4 x^2) + (-4 x^2 y)\right] \)[/tex]
- Similar to Option 2, this expression has partial grouping inside the brackets but the overall combination still needs further simplification.
4. Option 4: [tex]\( (-4 x^2) + 2 x y^2 + \left[10 x^2 y + (-4 x^2 y)\right] \)[/tex]
- Inside the brackets, we see [tex]\(10 x^2 y\)[/tex] combined with [tex]\(-4 x^2 y\)[/tex]. Outside the brackets, [tex]\(-4 x^2\)[/tex] and [tex]\(2 x y^2\)[/tex] are presented, ensuring that all like terms are clearly grouped.
5. Option 5: [tex]\( \left[10 x^2 y + 2 x y^2 + (-4 x^2 y)\right] + (-4 x^2) \)[/tex]
- Mainly groups terms inside the brackets, yet the placement is less clear than in Option 4.
Analyzing carefully:
- Option 4 is the best choice as it groups like terms logically. Inside the bracket, [tex]\(10 x^2 y - 4 x^2 y\)[/tex] are polynomial-like terms combined together. Similarly, outside the bracket are other terms which are not affected by [tex]\(x y\)[/tex] or [tex]\(x^2\)[/tex].
Thus, the expression that shows the sum of the polynomials with like terms grouped together is:
[tex]\[ \boxed{\left(-4 x^2\right) + 2 x y^2 + \left[10 x^2 y + \left(-4 x^2 y\right)\right]} \][/tex]
1. Option 1: [tex]\( 10 x^2 y + 2 x y^2 - 4 x^2 - 4 x^2 y \)[/tex]
- This is the original expression without any grouping of like terms.
2. Option 2: [tex]\( \left[(-4 x^2) + (-4 x^2 y) + 10 x^2 y\right] + 2 x y^2 \)[/tex]
- Grouping within the brackets shows an attempt to combine [tex]\((-4 x^2)\)[/tex], [tex]\((-4 x^2 y)\)[/tex], and [tex]\(10 x^2 y\)[/tex]. However, the terms inside and outside the brackets aren't consistently grouped with like terms.
3. Option 3: [tex]\( 10 x^2 y + 2 x y^2 + \left[(-4 x^2) + (-4 x^2 y)\right] \)[/tex]
- Similar to Option 2, this expression has partial grouping inside the brackets but the overall combination still needs further simplification.
4. Option 4: [tex]\( (-4 x^2) + 2 x y^2 + \left[10 x^2 y + (-4 x^2 y)\right] \)[/tex]
- Inside the brackets, we see [tex]\(10 x^2 y\)[/tex] combined with [tex]\(-4 x^2 y\)[/tex]. Outside the brackets, [tex]\(-4 x^2\)[/tex] and [tex]\(2 x y^2\)[/tex] are presented, ensuring that all like terms are clearly grouped.
5. Option 5: [tex]\( \left[10 x^2 y + 2 x y^2 + (-4 x^2 y)\right] + (-4 x^2) \)[/tex]
- Mainly groups terms inside the brackets, yet the placement is less clear than in Option 4.
Analyzing carefully:
- Option 4 is the best choice as it groups like terms logically. Inside the bracket, [tex]\(10 x^2 y - 4 x^2 y\)[/tex] are polynomial-like terms combined together. Similarly, outside the bracket are other terms which are not affected by [tex]\(x y\)[/tex] or [tex]\(x^2\)[/tex].
Thus, the expression that shows the sum of the polynomials with like terms grouped together is:
[tex]\[ \boxed{\left(-4 x^2\right) + 2 x y^2 + \left[10 x^2 y + \left(-4 x^2 y\right)\right]} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.