Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the probability that a group will take a selfie exactly 5 times, we need to follow several steps:
### Step 1: Determine Total Number of Groups
First, we need to determine the total number of groups. This is done by summing up the frequencies in the given data.
[tex]\[ \text{Total number of groups} = 27 + 29 + 18 + 14 + 12 \][/tex]
Adding these values, we get:
[tex]\[ 27 + 29 = 56 \][/tex]
[tex]\[ 56 + 18 = 74 \][/tex]
[tex]\[ 74 + 14 = 88 \][/tex]
[tex]\[ 88 + 12 = 100 \][/tex]
So, the total number of groups is 100.
### Step 2: Find the Frequency of Groups Taking a Selfie Exactly 5 Times
Next, we look at the frequency of groups that took a selfie exactly 5 times. From the table, we see that:
[tex]\[ \text{Frequency of groups taking a selfie 5 times} = 12 \][/tex]
### Step 3: Calculate the Probability
To find the probability that a group will take a selfie exactly 5 times, we divide the frequency of groups taking 5 selfies by the total number of groups.
[tex]\[ P(5) = \frac{\text{Frequency of groups taking a selfie 5 times}}{\text{Total number of groups}} \][/tex]
Substituting the numbers:
[tex]\[ P(5) = \frac{12}{100} \][/tex]
Simplifying this fraction, we get:
[tex]\[ P(5) = 0.12 \][/tex]
### Step 4: Express the Probability
Therefore, the probability that a group will take their selfie exactly 5 times is:
[tex]\[ P(5) = 0.12 \][/tex]
So, the probability a group will take their selfie exactly 5 times is [tex]\( 0.12 \)[/tex] or 12%.
### Step 1: Determine Total Number of Groups
First, we need to determine the total number of groups. This is done by summing up the frequencies in the given data.
[tex]\[ \text{Total number of groups} = 27 + 29 + 18 + 14 + 12 \][/tex]
Adding these values, we get:
[tex]\[ 27 + 29 = 56 \][/tex]
[tex]\[ 56 + 18 = 74 \][/tex]
[tex]\[ 74 + 14 = 88 \][/tex]
[tex]\[ 88 + 12 = 100 \][/tex]
So, the total number of groups is 100.
### Step 2: Find the Frequency of Groups Taking a Selfie Exactly 5 Times
Next, we look at the frequency of groups that took a selfie exactly 5 times. From the table, we see that:
[tex]\[ \text{Frequency of groups taking a selfie 5 times} = 12 \][/tex]
### Step 3: Calculate the Probability
To find the probability that a group will take a selfie exactly 5 times, we divide the frequency of groups taking 5 selfies by the total number of groups.
[tex]\[ P(5) = \frac{\text{Frequency of groups taking a selfie 5 times}}{\text{Total number of groups}} \][/tex]
Substituting the numbers:
[tex]\[ P(5) = \frac{12}{100} \][/tex]
Simplifying this fraction, we get:
[tex]\[ P(5) = 0.12 \][/tex]
### Step 4: Express the Probability
Therefore, the probability that a group will take their selfie exactly 5 times is:
[tex]\[ P(5) = 0.12 \][/tex]
So, the probability a group will take their selfie exactly 5 times is [tex]\( 0.12 \)[/tex] or 12%.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.