At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Here’s a step-by-step guide to solving the problem of finding the probability that a randomly selected customer from the phone store purchased either a standard-sized phone or a Phone II:
### Step 1: Calculate the Total Number of Customers
First, we need to find the total number of purchases:
[tex]\[ 7 (\text{Mini - Phone I}) + 23 (\text{Mini - Phone II}) + 31 (\text{Mini - Phone III}) + 43 (\text{Standard - Phone I}) + 41 (\text{Standard - Phone II}) + 29 (\text{Standard - Phone III}) + 2 (\text{Maximum - Phone I}) + 17 (\text{Maximum - Phone II}) + 13 (\text{Maximum - Phone III}) \][/tex]
Summing these values, we get:
[tex]\[ 206 \text{ total customers} \][/tex]
### Step 2: Calculate the Number of Customers Who Purchased Standard-Sized Phones
We tally the number for all standard-sized phones:
[tex]\[ 43 (\text{Standard - Phone I}) + 41 (\text{Standard - Phone II}) + 29 (\text{Standard - Phone III}) \][/tex]
Adding these numbers gives:
[tex]\[ 113 \text{ customers} \][/tex]
### Step 3: Calculate the Number of Customers Who Purchased Phone II
We count all purchases of Phone II:
[tex]\[ 23 (\text{Mini - Phone II}) + 41 (\text{Standard - Phone II}) + 17 (\text{Maximum - Phone II}) \][/tex]
Summing these values, we get:
[tex]\[ 81 \text{ customers} \][/tex]
### Step 4: Determine the Number of Customers Who Purchased Both a Standard-Sized Phone and Phone II
We look specifically at Standard - Phone II purchases:
[tex]\[ 41 \][/tex]
### Step 5: Use the Principle of Inclusion and Exclusion
To find the probability of a customer purchasing either a standard-sized phone or a Phone II, we use the formula for the union of two sets:
[tex]\[ P(\text{Standard or Phone II}) = \frac{(\text{Number of standard-sized phones}) + (\text{Number of Phone II}) - (\text{Number of both standard and Phone II})}{\text{Total number of customers}} \][/tex]
Substituting the values:
[tex]\[ P(\text{Standard or Phone II}) = \frac{113 + 81 - 41}{206} = \frac{153}{206} \][/tex]
### Step 6: Simplify the Fraction
We simplify the fraction [tex]\(\frac{153}{206}\)[/tex]. The simplest form of this fraction is:
[tex]\[ \frac{153}{206} \][/tex]
Hence, the probability that a randomly selected customer purchased either a standard-sized phone or a Phone II is [tex]\(\frac{153}{206}\)[/tex].
### Step 1: Calculate the Total Number of Customers
First, we need to find the total number of purchases:
[tex]\[ 7 (\text{Mini - Phone I}) + 23 (\text{Mini - Phone II}) + 31 (\text{Mini - Phone III}) + 43 (\text{Standard - Phone I}) + 41 (\text{Standard - Phone II}) + 29 (\text{Standard - Phone III}) + 2 (\text{Maximum - Phone I}) + 17 (\text{Maximum - Phone II}) + 13 (\text{Maximum - Phone III}) \][/tex]
Summing these values, we get:
[tex]\[ 206 \text{ total customers} \][/tex]
### Step 2: Calculate the Number of Customers Who Purchased Standard-Sized Phones
We tally the number for all standard-sized phones:
[tex]\[ 43 (\text{Standard - Phone I}) + 41 (\text{Standard - Phone II}) + 29 (\text{Standard - Phone III}) \][/tex]
Adding these numbers gives:
[tex]\[ 113 \text{ customers} \][/tex]
### Step 3: Calculate the Number of Customers Who Purchased Phone II
We count all purchases of Phone II:
[tex]\[ 23 (\text{Mini - Phone II}) + 41 (\text{Standard - Phone II}) + 17 (\text{Maximum - Phone II}) \][/tex]
Summing these values, we get:
[tex]\[ 81 \text{ customers} \][/tex]
### Step 4: Determine the Number of Customers Who Purchased Both a Standard-Sized Phone and Phone II
We look specifically at Standard - Phone II purchases:
[tex]\[ 41 \][/tex]
### Step 5: Use the Principle of Inclusion and Exclusion
To find the probability of a customer purchasing either a standard-sized phone or a Phone II, we use the formula for the union of two sets:
[tex]\[ P(\text{Standard or Phone II}) = \frac{(\text{Number of standard-sized phones}) + (\text{Number of Phone II}) - (\text{Number of both standard and Phone II})}{\text{Total number of customers}} \][/tex]
Substituting the values:
[tex]\[ P(\text{Standard or Phone II}) = \frac{113 + 81 - 41}{206} = \frac{153}{206} \][/tex]
### Step 6: Simplify the Fraction
We simplify the fraction [tex]\(\frac{153}{206}\)[/tex]. The simplest form of this fraction is:
[tex]\[ \frac{153}{206} \][/tex]
Hence, the probability that a randomly selected customer purchased either a standard-sized phone or a Phone II is [tex]\(\frac{153}{206}\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.