Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's solve this step-by-step based on the given problem.
### Problem Statement
The motion of a particle in a plane is defined by the equations:
[tex]$ x(t) = 13 + 3t - 4 $[/tex]
[tex]$ y(t) = 12 - 2t + 6 $[/tex]
We need to determine the velocity and acceleration of the particle after 3 seconds (t = 3 seconds).
### Step 1: Calculate the Position at t = 3 seconds
We need to determine the position of the particle at [tex]\( t = 3 \)[/tex] seconds using the given equations for [tex]\( x(t) \)[/tex] and [tex]\( y(t) \)[/tex].
#### For x(t):
[tex]$ x(3) = 13 + 3(3) - 4 $[/tex]
[tex]\[ = 13 + 9 - 4 \\ = 18 \][/tex]
#### For y(t):
[tex]$ y(3) = 12 - 2(3) + 6 $[/tex]
[tex]\[ = 12 - 6 + 6 \\ = 12 \][/tex]
So, the position of the particle at [tex]\( t = 3 \)[/tex] seconds is [tex]\( (18, 12) \)[/tex] meters.
### Step 2: Determine the Velocity
Velocity is the first derivative of the position with respect to time.
#### For x(t):
The velocity in the x-direction, [tex]\( v_x \)[/tex], is the derivative of [tex]\( x(t) \)[/tex]:
[tex]$ \frac{dx}{dt} = \frac{d}{dt}(13 + 3t - 4) \\ = 3 $[/tex]
#### For y(t):
The velocity in the y-direction, [tex]\( v_y \)[/tex], is the derivative of [tex]\( y(t) \)[/tex]:
[tex]$ \frac{dy}{dt} = \frac{d}{dt}(12 - 2t + 6) \\ = -2 $[/tex]
Therefore, the velocity of the particle at [tex]\( t = 3 \)[/tex] seconds is [tex]\( (3, -2) \)[/tex] meters per second.
### Step 3: Determine the Acceleration
Acceleration is the second derivative of the position with respect to time or the first derivative of velocity with respect to time.
#### For x(t):
The acceleration in the x-direction, [tex]\( a_x \)[/tex], is the derivative of [tex]\( v_x \)[/tex]:
[tex]$ \frac{d^2x}{dt^2} = \frac{d}{dt}(3) \\ = 0 $[/tex]
#### For y(t):
The acceleration in the y-direction, [tex]\( a_y \)[/tex], is the derivative of [tex]\( v_y \)[/tex]:
[tex]$ \frac{d^2y}{dt^2} = \frac{d}{dt}(-2) \\ = 0 $[/tex]
Therefore, the acceleration of the particle at [tex]\( t = 3 \)[/tex] seconds is [tex]\( (0, 0) \)[/tex] meters per second squared.
### Summary
- Position at [tex]\( t = 3 \)[/tex] seconds: [tex]\( (18, 12) \)[/tex] meters
- Velocity at [tex]\( t = 3 \)[/tex] seconds: [tex]\( (3, -2) \)[/tex] meters per second
- Acceleration at [tex]\( t = 3 \)[/tex] seconds: [tex]\( (0, 0) \)[/tex] meters per second squared
### Problem Statement
The motion of a particle in a plane is defined by the equations:
[tex]$ x(t) = 13 + 3t - 4 $[/tex]
[tex]$ y(t) = 12 - 2t + 6 $[/tex]
We need to determine the velocity and acceleration of the particle after 3 seconds (t = 3 seconds).
### Step 1: Calculate the Position at t = 3 seconds
We need to determine the position of the particle at [tex]\( t = 3 \)[/tex] seconds using the given equations for [tex]\( x(t) \)[/tex] and [tex]\( y(t) \)[/tex].
#### For x(t):
[tex]$ x(3) = 13 + 3(3) - 4 $[/tex]
[tex]\[ = 13 + 9 - 4 \\ = 18 \][/tex]
#### For y(t):
[tex]$ y(3) = 12 - 2(3) + 6 $[/tex]
[tex]\[ = 12 - 6 + 6 \\ = 12 \][/tex]
So, the position of the particle at [tex]\( t = 3 \)[/tex] seconds is [tex]\( (18, 12) \)[/tex] meters.
### Step 2: Determine the Velocity
Velocity is the first derivative of the position with respect to time.
#### For x(t):
The velocity in the x-direction, [tex]\( v_x \)[/tex], is the derivative of [tex]\( x(t) \)[/tex]:
[tex]$ \frac{dx}{dt} = \frac{d}{dt}(13 + 3t - 4) \\ = 3 $[/tex]
#### For y(t):
The velocity in the y-direction, [tex]\( v_y \)[/tex], is the derivative of [tex]\( y(t) \)[/tex]:
[tex]$ \frac{dy}{dt} = \frac{d}{dt}(12 - 2t + 6) \\ = -2 $[/tex]
Therefore, the velocity of the particle at [tex]\( t = 3 \)[/tex] seconds is [tex]\( (3, -2) \)[/tex] meters per second.
### Step 3: Determine the Acceleration
Acceleration is the second derivative of the position with respect to time or the first derivative of velocity with respect to time.
#### For x(t):
The acceleration in the x-direction, [tex]\( a_x \)[/tex], is the derivative of [tex]\( v_x \)[/tex]:
[tex]$ \frac{d^2x}{dt^2} = \frac{d}{dt}(3) \\ = 0 $[/tex]
#### For y(t):
The acceleration in the y-direction, [tex]\( a_y \)[/tex], is the derivative of [tex]\( v_y \)[/tex]:
[tex]$ \frac{d^2y}{dt^2} = \frac{d}{dt}(-2) \\ = 0 $[/tex]
Therefore, the acceleration of the particle at [tex]\( t = 3 \)[/tex] seconds is [tex]\( (0, 0) \)[/tex] meters per second squared.
### Summary
- Position at [tex]\( t = 3 \)[/tex] seconds: [tex]\( (18, 12) \)[/tex] meters
- Velocity at [tex]\( t = 3 \)[/tex] seconds: [tex]\( (3, -2) \)[/tex] meters per second
- Acceleration at [tex]\( t = 3 \)[/tex] seconds: [tex]\( (0, 0) \)[/tex] meters per second squared
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.