Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the maximum speed of a mass attached to a spring that has been displaced and released, we can use the formula for the maximum speed in simple harmonic motion:
[tex]\[ v_{\text{max}} = \sqrt{\frac{k}{m}} \cdot A \][/tex]
where:
- [tex]\( v_{\text{max}} \)[/tex] is the maximum speed,
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( A \)[/tex] is the amplitude of the motion (which in this case is the initial displacement).
Given the data:
- Spring constant, [tex]\( k = 33.5 \, \text{N/m} \)[/tex]
- Mass, [tex]\( m = 1.20 \, \text{kg} \)[/tex]
- Displacement (amplitude), [tex]\( A = 0.120 \, \text{m} \)[/tex]
Let's go through the steps to calculate the maximum speed:
1. First, determine the ratio of the spring constant to the mass:
[tex]\[ \frac{k}{m} = \frac{33.5 \, \text{N/m}}{1.20 \, \text{kg}} \][/tex]
2. After calculating the ratio, take the square root of this ratio to get the angular frequency:
[tex]\[ \sqrt{\frac{k}{m}} \][/tex]
3. Multiply this result by the amplitude [tex]\( A \)[/tex]:
[tex]\[ v_{\text{max}} = \sqrt{\frac{33.5}{1.20}} \cdot 0.120 \][/tex]
Following these steps and using the correct values, the maximum speed comes out to be:
[tex]\[ v_{\text{max}} \approx 0.634 \, \text{m/s} \][/tex]
So, the maximum speed of the mass is approximately [tex]\( 0.634 \, \text{m/s} \)[/tex].
[tex]\[ v_{\text{max}} = \sqrt{\frac{k}{m}} \cdot A \][/tex]
where:
- [tex]\( v_{\text{max}} \)[/tex] is the maximum speed,
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( A \)[/tex] is the amplitude of the motion (which in this case is the initial displacement).
Given the data:
- Spring constant, [tex]\( k = 33.5 \, \text{N/m} \)[/tex]
- Mass, [tex]\( m = 1.20 \, \text{kg} \)[/tex]
- Displacement (amplitude), [tex]\( A = 0.120 \, \text{m} \)[/tex]
Let's go through the steps to calculate the maximum speed:
1. First, determine the ratio of the spring constant to the mass:
[tex]\[ \frac{k}{m} = \frac{33.5 \, \text{N/m}}{1.20 \, \text{kg}} \][/tex]
2. After calculating the ratio, take the square root of this ratio to get the angular frequency:
[tex]\[ \sqrt{\frac{k}{m}} \][/tex]
3. Multiply this result by the amplitude [tex]\( A \)[/tex]:
[tex]\[ v_{\text{max}} = \sqrt{\frac{33.5}{1.20}} \cdot 0.120 \][/tex]
Following these steps and using the correct values, the maximum speed comes out to be:
[tex]\[ v_{\text{max}} \approx 0.634 \, \text{m/s} \][/tex]
So, the maximum speed of the mass is approximately [tex]\( 0.634 \, \text{m/s} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.