Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the expression [tex]\(\left(4 x^2 y^3 + 2 x y^2 - 2 y\right) - \left(-7 x^2 y^3 + 6 x y^2 - 2 y\right)\)[/tex], we need to subtract the corresponding terms from each expression step-by-step.
1. Identify the terms in each polynomial:
For the first expression [tex]\(4 x^2 y^3 + 2 x y^2 - 2 y\)[/tex]:
- Term involving [tex]\(x^2 y^3\)[/tex]: [tex]\(4 x^2 y^3\)[/tex]
- Term involving [tex]\(x y^2\)[/tex]: [tex]\(2 x y^2\)[/tex]
- Term involving [tex]\(y\)[/tex]: [tex]\(-2 y\)[/tex]
For the second expression [tex]\(-7 x^2 y^3 + 6 x y^2 - 2 y\)[/tex]:
- Term involving [tex]\(x^2 y^3\)[/tex]: [tex]\(-7 x^2 y^3\)[/tex]
- Term involving [tex]\(x y^2\)[/tex]: [tex]\(6 x y^2\)[/tex]
- Term involving [tex]\(y\)[/tex]: [tex]\(-2 y\)[/tex]
2. Subtract the corresponding terms:
- For the term involving [tex]\(x^2 y^3\)[/tex]:
[tex]\(4 x^2 y^3 - (-7 x^2 y^3) = 4 x^2 y^3 + 7 x^2 y^3 = 11 x^2 y^3\)[/tex]
- For the term involving [tex]\(x y^2\)[/tex]:
[tex]\(2 x y^2 - 6 x y^2 = 2 x y^2 - 6 x y^2 = -4 x y^2\)[/tex]
- For the term involving [tex]\(y\)[/tex]:
[tex]\(-2 y - (-2 y) = -2 y + 2 y = 0\)[/tex]
3. Combine the results to form the final expression:
- The term involving [tex]\(x^2 y^3\)[/tex] has a coefficient of 11
- The term involving [tex]\(x y^2\)[/tex] has a coefficient of -4
- The term involving [tex]\(y\)[/tex] has a coefficient of 0
Therefore, the final expression is:
[tex]\[ 11 x^2 y^3 - 4 x y^2 + 0 y \implies 11 x^2 y^3 - 4 x y^2 \][/tex]
Hence, placing the correct coefficients in the difference:
- The coefficient before [tex]\(x^2 y^3\)[/tex] is [tex]\(11\)[/tex]
- The coefficient before [tex]\(x y^2\)[/tex] is [tex]\(-4\)[/tex]
- The coefficient before [tex]\(y\)[/tex] is [tex]\(0\)[/tex]
So, the coefficients are:
[tex]\[ 11, -4 x y^2, 0 y \][/tex]
In the final simplified form, we just have:
[tex]\[ 11x^2y^3 - 4xy^2 \][/tex]
1. Identify the terms in each polynomial:
For the first expression [tex]\(4 x^2 y^3 + 2 x y^2 - 2 y\)[/tex]:
- Term involving [tex]\(x^2 y^3\)[/tex]: [tex]\(4 x^2 y^3\)[/tex]
- Term involving [tex]\(x y^2\)[/tex]: [tex]\(2 x y^2\)[/tex]
- Term involving [tex]\(y\)[/tex]: [tex]\(-2 y\)[/tex]
For the second expression [tex]\(-7 x^2 y^3 + 6 x y^2 - 2 y\)[/tex]:
- Term involving [tex]\(x^2 y^3\)[/tex]: [tex]\(-7 x^2 y^3\)[/tex]
- Term involving [tex]\(x y^2\)[/tex]: [tex]\(6 x y^2\)[/tex]
- Term involving [tex]\(y\)[/tex]: [tex]\(-2 y\)[/tex]
2. Subtract the corresponding terms:
- For the term involving [tex]\(x^2 y^3\)[/tex]:
[tex]\(4 x^2 y^3 - (-7 x^2 y^3) = 4 x^2 y^3 + 7 x^2 y^3 = 11 x^2 y^3\)[/tex]
- For the term involving [tex]\(x y^2\)[/tex]:
[tex]\(2 x y^2 - 6 x y^2 = 2 x y^2 - 6 x y^2 = -4 x y^2\)[/tex]
- For the term involving [tex]\(y\)[/tex]:
[tex]\(-2 y - (-2 y) = -2 y + 2 y = 0\)[/tex]
3. Combine the results to form the final expression:
- The term involving [tex]\(x^2 y^3\)[/tex] has a coefficient of 11
- The term involving [tex]\(x y^2\)[/tex] has a coefficient of -4
- The term involving [tex]\(y\)[/tex] has a coefficient of 0
Therefore, the final expression is:
[tex]\[ 11 x^2 y^3 - 4 x y^2 + 0 y \implies 11 x^2 y^3 - 4 x y^2 \][/tex]
Hence, placing the correct coefficients in the difference:
- The coefficient before [tex]\(x^2 y^3\)[/tex] is [tex]\(11\)[/tex]
- The coefficient before [tex]\(x y^2\)[/tex] is [tex]\(-4\)[/tex]
- The coefficient before [tex]\(y\)[/tex] is [tex]\(0\)[/tex]
So, the coefficients are:
[tex]\[ 11, -4 x y^2, 0 y \][/tex]
In the final simplified form, we just have:
[tex]\[ 11x^2y^3 - 4xy^2 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.