Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve and simplify the given expression step-by-step:
We need to simplify the expression:
[tex]\[ \frac{2x^2 - 10}{x + 1} \cdot \frac{x - 4}{4x^2 - 20} \][/tex]
### Step 1: Factorize where possible
First, we look at the components of the expression and see if we can factorize the numerators and denominators.
#### Numerator and denominator of the first fraction:
[tex]\[ 2x^2 - 10 \][/tex]
This can be factored as:
[tex]\[ 2(x^2 - 5) \][/tex]
Hence,
[tex]\[ \frac{2x^2 - 10}{x + 1} = \frac{2(x^2 - 5)}{x + 1} \][/tex]
#### Numerator and denominator of the second fraction:
[tex]\[ 4x^2 - 20 \][/tex]
This can be factored as:
[tex]\[ 4(x^2 - 5) \][/tex]
Hence,
[tex]\[ \frac{x - 4}{4x^2 - 20} = \frac{x - 4}{4(x^2 - 5)} \][/tex]
### Step 2: Combine the fractions
Now, substitute these factored forms back into the original expression:
[tex]\[ \left(\frac{2(x^2 - 5)}{x + 1}\right) \cdot \left(\frac{x - 4}{4(x^2 - 5)}\right) \][/tex]
### Step 3: Simplify
Notice that [tex]\((x^2 - 5)\)[/tex] appears in both the numerator and the denominator, so we can cancel it out:
[tex]\[ \frac{2 \cancel{(x^2 - 5)}}{x + 1} \cdot \frac{x - 4}{4 \cancel{(x^2 - 5)}} \][/tex]
This simplifies to:
[tex]\[ \frac{2}{x + 1} \cdot \frac{x - 4}{4} \][/tex]
Multiply the remaining parts:
[tex]\[ \frac{2(x - 4)}{4(x + 1)} \][/tex]
### Step 4: Simplify further
We can divide both the numerator and the denominator by 2:
[tex]\[ \frac{(x - 4)}{2(x + 1)} \][/tex]
Thus, the expression simplifies to:
[tex]\[ \frac{x - 4}{2(x + 1)} \][/tex]
So the simplified fraction is [tex]\(\frac{x - 4}{2(x + 1)}\)[/tex].
We need to simplify the expression:
[tex]\[ \frac{2x^2 - 10}{x + 1} \cdot \frac{x - 4}{4x^2 - 20} \][/tex]
### Step 1: Factorize where possible
First, we look at the components of the expression and see if we can factorize the numerators and denominators.
#### Numerator and denominator of the first fraction:
[tex]\[ 2x^2 - 10 \][/tex]
This can be factored as:
[tex]\[ 2(x^2 - 5) \][/tex]
Hence,
[tex]\[ \frac{2x^2 - 10}{x + 1} = \frac{2(x^2 - 5)}{x + 1} \][/tex]
#### Numerator and denominator of the second fraction:
[tex]\[ 4x^2 - 20 \][/tex]
This can be factored as:
[tex]\[ 4(x^2 - 5) \][/tex]
Hence,
[tex]\[ \frac{x - 4}{4x^2 - 20} = \frac{x - 4}{4(x^2 - 5)} \][/tex]
### Step 2: Combine the fractions
Now, substitute these factored forms back into the original expression:
[tex]\[ \left(\frac{2(x^2 - 5)}{x + 1}\right) \cdot \left(\frac{x - 4}{4(x^2 - 5)}\right) \][/tex]
### Step 3: Simplify
Notice that [tex]\((x^2 - 5)\)[/tex] appears in both the numerator and the denominator, so we can cancel it out:
[tex]\[ \frac{2 \cancel{(x^2 - 5)}}{x + 1} \cdot \frac{x - 4}{4 \cancel{(x^2 - 5)}} \][/tex]
This simplifies to:
[tex]\[ \frac{2}{x + 1} \cdot \frac{x - 4}{4} \][/tex]
Multiply the remaining parts:
[tex]\[ \frac{2(x - 4)}{4(x + 1)} \][/tex]
### Step 4: Simplify further
We can divide both the numerator and the denominator by 2:
[tex]\[ \frac{(x - 4)}{2(x + 1)} \][/tex]
Thus, the expression simplifies to:
[tex]\[ \frac{x - 4}{2(x + 1)} \][/tex]
So the simplified fraction is [tex]\(\frac{x - 4}{2(x + 1)}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.