Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's simplify the given expression in a detailed step-by-step manner.
The given expression is:
[tex]\[ \left( \frac{x^2 + 6x - 7}{x^4 + 8x^3 + 7x^2} \right) \cdot 3x^2 \][/tex]
### Step 1: Factor the numerator and denominator
1. Factor the numerator [tex]\( x^2 + 6x - 7 \)[/tex]:
The numerator is a quadratic equation. To factor it, we look for two numbers that multiply to [tex]\(-7\)[/tex] and add to [tex]\(6\)[/tex]. These numbers are [tex]\(7\)[/tex] and [tex]\(-1\)[/tex].
So, we can factor the numerator as follows:
[tex]\[ x^2 + 6x - 7 = (x + 7)(x - 1) \][/tex]
2. Factor the denominator [tex]\( x^4 + 8x^3 + 7x^2 \)[/tex]:
The denominator has a common factor [tex]\(x^2\)[/tex], so we can factor it out first:
[tex]\[ x^4 + 8x^3 + 7x^2 = x^2 (x^2 + 8x + 7) \][/tex]
Next, we factor the quadratic expression [tex]\(x^2 + 8x + 7\)[/tex]. We look for two numbers that multiply to [tex]\(7\)[/tex] and add to [tex]\(8\)[/tex]. These numbers are [tex]\(7\)[/tex] and [tex]\(1\)[/tex].
So, we can factor it as follows:
[tex]\[ x^2 + 8x + 7 = (x + 7)(x + 1) \][/tex]
Combining everything, the denominator becomes:
[tex]\[ x^4 + 8x^3 + 7x^2 = x^2 (x + 7)(x + 1) \][/tex]
### Step 2: Write the expression with the factors
Now we can rewrite the original expression using these factors:
[tex]\[ \left( \frac{(x + 7)(x - 1)}{x^2 (x + 7)(x + 1)} \right) \cdot 3x^2 \][/tex]
### Step 3: Simplify the fraction
In the fraction, we can cancel out the common factor [tex]\((x + 7)\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{(x - 1)}{x^2 (x + 1)} \][/tex]
### Step 4: Multiply by the remaining expression [tex]\(3x^2\)[/tex]
Now we need to multiply the remaining fraction by [tex]\(3x^2\)[/tex]:
[tex]\[ \left( \frac{(x - 1)}{x^2 (x + 1)} \right) \cdot 3x^2 \][/tex]
The [tex]\(x^2\)[/tex] in the numerator and denominator cancel each other out:
[tex]\[ \frac{(x - 1) \cdot 3x^2}{x^2 (x + 1)} = \frac{3(x - 1)}{x + 1} \][/tex]
### Final simplified expression
The simplified form of the original expression is:
[tex]\[ \boxed{\frac{3(x - 1)}{x + 1}} \][/tex]
Hence, the final answer after simplification is:
[tex]\[ \frac{3(x - 1)}{x + 1} \][/tex]
The given expression is:
[tex]\[ \left( \frac{x^2 + 6x - 7}{x^4 + 8x^3 + 7x^2} \right) \cdot 3x^2 \][/tex]
### Step 1: Factor the numerator and denominator
1. Factor the numerator [tex]\( x^2 + 6x - 7 \)[/tex]:
The numerator is a quadratic equation. To factor it, we look for two numbers that multiply to [tex]\(-7\)[/tex] and add to [tex]\(6\)[/tex]. These numbers are [tex]\(7\)[/tex] and [tex]\(-1\)[/tex].
So, we can factor the numerator as follows:
[tex]\[ x^2 + 6x - 7 = (x + 7)(x - 1) \][/tex]
2. Factor the denominator [tex]\( x^4 + 8x^3 + 7x^2 \)[/tex]:
The denominator has a common factor [tex]\(x^2\)[/tex], so we can factor it out first:
[tex]\[ x^4 + 8x^3 + 7x^2 = x^2 (x^2 + 8x + 7) \][/tex]
Next, we factor the quadratic expression [tex]\(x^2 + 8x + 7\)[/tex]. We look for two numbers that multiply to [tex]\(7\)[/tex] and add to [tex]\(8\)[/tex]. These numbers are [tex]\(7\)[/tex] and [tex]\(1\)[/tex].
So, we can factor it as follows:
[tex]\[ x^2 + 8x + 7 = (x + 7)(x + 1) \][/tex]
Combining everything, the denominator becomes:
[tex]\[ x^4 + 8x^3 + 7x^2 = x^2 (x + 7)(x + 1) \][/tex]
### Step 2: Write the expression with the factors
Now we can rewrite the original expression using these factors:
[tex]\[ \left( \frac{(x + 7)(x - 1)}{x^2 (x + 7)(x + 1)} \right) \cdot 3x^2 \][/tex]
### Step 3: Simplify the fraction
In the fraction, we can cancel out the common factor [tex]\((x + 7)\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{(x - 1)}{x^2 (x + 1)} \][/tex]
### Step 4: Multiply by the remaining expression [tex]\(3x^2\)[/tex]
Now we need to multiply the remaining fraction by [tex]\(3x^2\)[/tex]:
[tex]\[ \left( \frac{(x - 1)}{x^2 (x + 1)} \right) \cdot 3x^2 \][/tex]
The [tex]\(x^2\)[/tex] in the numerator and denominator cancel each other out:
[tex]\[ \frac{(x - 1) \cdot 3x^2}{x^2 (x + 1)} = \frac{3(x - 1)}{x + 1} \][/tex]
### Final simplified expression
The simplified form of the original expression is:
[tex]\[ \boxed{\frac{3(x - 1)}{x + 1}} \][/tex]
Hence, the final answer after simplification is:
[tex]\[ \frac{3(x - 1)}{x + 1} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.