Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To differentiate the function [tex]\( f(x) = (x^4 - 1)(x - 1) \)[/tex] using the product rule, we will follow these steps systematically:
1. Identify the functions: Let [tex]\( u(x) = x^4 - 1 \)[/tex] and [tex]\( v(x) = x - 1 \)[/tex].
2. Differentiate each function:
- The derivative of [tex]\( u(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( u'(x) = 4x^3 \)[/tex].
- The derivative of [tex]\( v(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( v'(x) = 1 \)[/tex].
3. Apply the product rule: The product rule states that if [tex]\( f(x) = u(x)v(x) \)[/tex], then the derivative [tex]\( f'(x) \)[/tex] is given by:
[tex]\[ f'(x) = u'(x)v(x) + u(x)v'(x) \][/tex]
4. Plug in the differentiated functions and the original functions:
- Substitute [tex]\( u'(x) = 4x^3 \)[/tex], [tex]\( u(x) = x^4 - 1 \)[/tex], [tex]\( v'(x) = 1 \)[/tex], and [tex]\( v(x) = x - 1 \)[/tex] into the product rule formula:
[tex]\[ f'(x) = 4x^3 (x - 1) + (x^4 - 1)(1) \][/tex]
5. Simplify the expression:
[tex]\[ f'(x) = 4x^3 (x - 1) + x^4 - 1 \][/tex]
[tex]\[ f'(x) = 4x^4 - 4x^3 + x^4 - 1 \][/tex]
6. Combine like terms:
[tex]\[ f'(x) = x^4 + 4x^3 (x - 1) - 1 \][/tex]
Therefore, the derivative of [tex]\( f(x) = (x^4 - 1)(x - 1) \)[/tex] with respect to [tex]\( x \)[/tex] is
[tex]\[ f'(x) = x^4 + 4x^3 (x - 1) - 1 \][/tex]
1. Identify the functions: Let [tex]\( u(x) = x^4 - 1 \)[/tex] and [tex]\( v(x) = x - 1 \)[/tex].
2. Differentiate each function:
- The derivative of [tex]\( u(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( u'(x) = 4x^3 \)[/tex].
- The derivative of [tex]\( v(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( v'(x) = 1 \)[/tex].
3. Apply the product rule: The product rule states that if [tex]\( f(x) = u(x)v(x) \)[/tex], then the derivative [tex]\( f'(x) \)[/tex] is given by:
[tex]\[ f'(x) = u'(x)v(x) + u(x)v'(x) \][/tex]
4. Plug in the differentiated functions and the original functions:
- Substitute [tex]\( u'(x) = 4x^3 \)[/tex], [tex]\( u(x) = x^4 - 1 \)[/tex], [tex]\( v'(x) = 1 \)[/tex], and [tex]\( v(x) = x - 1 \)[/tex] into the product rule formula:
[tex]\[ f'(x) = 4x^3 (x - 1) + (x^4 - 1)(1) \][/tex]
5. Simplify the expression:
[tex]\[ f'(x) = 4x^3 (x - 1) + x^4 - 1 \][/tex]
[tex]\[ f'(x) = 4x^4 - 4x^3 + x^4 - 1 \][/tex]
6. Combine like terms:
[tex]\[ f'(x) = x^4 + 4x^3 (x - 1) - 1 \][/tex]
Therefore, the derivative of [tex]\( f(x) = (x^4 - 1)(x - 1) \)[/tex] with respect to [tex]\( x \)[/tex] is
[tex]\[ f'(x) = x^4 + 4x^3 (x - 1) - 1 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.