Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the speed of the pendulum at the lowest point of its path, we will use the principles of conservation of energy. Specifically, we'll use the fact that the potential energy at the starting height is fully converted to kinetic energy at the lowest point.
Here’s the step-by-step solution:
1. Identify the Given Data:
- Mass of the pendulum, [tex]\( m = 1.5 \, \text{kg} \)[/tex]
- Initial height, [tex]\( h = 0.4 \, \text{m} \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
2. Calculate the Potential Energy at the Starting Height:
Potential energy (PE) is given by the formula:
[tex]\[ \text{PE}_{\text{initial}} = mgh \][/tex]
Substituting the values:
[tex]\[ \text{PE}_{\text{initial}} = 1.5 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 0.4 \, \text{m} \][/tex]
[tex]\[ \text{PE}_{\text{initial}} = 5.880 \, \text{J} \][/tex]
3. Relate Potential Energy to Kinetic Energy at the Lowest Point:
At the lowest point, all the initial potential energy is converted into kinetic energy (KE). Kinetic energy is given by the formula:
[tex]\[ \text{KE} = \frac{1}{2} mv^2 \][/tex]
Setting [tex]\(\text{PE}_{\text{initial}} = \text{KE}\)[/tex], we have:
[tex]\[ 5.880 \, \text{J} = \frac{1}{2} \times 1.5 \, \text{kg} \times v^2 \][/tex]
4. Solve for the Velocity:
[tex]\[ 5.880 = \frac{1}{2} \times 1.5 \times v^2 \][/tex]
Simplify the equation:
[tex]\[ 5.880 = 0.75 \times v^2 \][/tex]
Solve for [tex]\( v^2 \)[/tex]:
[tex]\[ v^2 = \frac{5.880}{0.75} \][/tex]
[tex]\[ v^2 = 7.840 \][/tex]
Taking the square root of both sides to find [tex]\( v \)[/tex]:
[tex]\[ v = \sqrt{7.840} \][/tex]
[tex]\[ v \approx 2.8 \, \text{m/s} \][/tex]
5. Conclusion:
The speed of the pendulum at the lowest point of its path is [tex]\( 2.8 \, \text{m/s} \)[/tex].
Therefore, the correct answer is:
A. [tex]\(2.8 \, \text{m/s}\)[/tex]
Here’s the step-by-step solution:
1. Identify the Given Data:
- Mass of the pendulum, [tex]\( m = 1.5 \, \text{kg} \)[/tex]
- Initial height, [tex]\( h = 0.4 \, \text{m} \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
2. Calculate the Potential Energy at the Starting Height:
Potential energy (PE) is given by the formula:
[tex]\[ \text{PE}_{\text{initial}} = mgh \][/tex]
Substituting the values:
[tex]\[ \text{PE}_{\text{initial}} = 1.5 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 0.4 \, \text{m} \][/tex]
[tex]\[ \text{PE}_{\text{initial}} = 5.880 \, \text{J} \][/tex]
3. Relate Potential Energy to Kinetic Energy at the Lowest Point:
At the lowest point, all the initial potential energy is converted into kinetic energy (KE). Kinetic energy is given by the formula:
[tex]\[ \text{KE} = \frac{1}{2} mv^2 \][/tex]
Setting [tex]\(\text{PE}_{\text{initial}} = \text{KE}\)[/tex], we have:
[tex]\[ 5.880 \, \text{J} = \frac{1}{2} \times 1.5 \, \text{kg} \times v^2 \][/tex]
4. Solve for the Velocity:
[tex]\[ 5.880 = \frac{1}{2} \times 1.5 \times v^2 \][/tex]
Simplify the equation:
[tex]\[ 5.880 = 0.75 \times v^2 \][/tex]
Solve for [tex]\( v^2 \)[/tex]:
[tex]\[ v^2 = \frac{5.880}{0.75} \][/tex]
[tex]\[ v^2 = 7.840 \][/tex]
Taking the square root of both sides to find [tex]\( v \)[/tex]:
[tex]\[ v = \sqrt{7.840} \][/tex]
[tex]\[ v \approx 2.8 \, \text{m/s} \][/tex]
5. Conclusion:
The speed of the pendulum at the lowest point of its path is [tex]\( 2.8 \, \text{m/s} \)[/tex].
Therefore, the correct answer is:
A. [tex]\(2.8 \, \text{m/s}\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.