Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem of finding how far the bird (B) is from its nest (N) given the angle and distance from the observer (O) to the bird, we need to use trigonometric principles.
Here's a step-by-step solution:
1. Understand the problem:
- Observer (O) sees the bird (B) at an angle of [tex]\(55^\circ\)[/tex] from the horizontal line to its nest (N).
- The distance from the observer (O) to the bird (B) is 15,000 feet.
2. Identify the formula:
- In a right triangle, the sine of an angle is given by the ratio of the length of the opposite side to the hypotenuse. Here, we have
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
- Here, [tex]\(\theta = 55^\circ\)[/tex], the opposite side is the distance from the bird to its nest (N), and the hypotenuse is the distance from the observer (O) to the bird (B).
3. Convert the angle from degrees to radians:
- We convert [tex]\(55^\circ\)[/tex] to radians because trigonometric calculations are typically done in radians. Using the conversion factor [tex]\(\pi \text{ radians} = 180^\circ\)[/tex]:
[tex]\[ \theta = \frac{55 \times \pi}{180} \approx 0.959931 \text{ radians} \][/tex]
4. Calculate the distance from the bird to its nest:
- Using the sine function:
[tex]\[ \sin(55^\circ) = \sin(0.959931) \approx 0.819152 \][/tex]
- Thus,
[tex]\[ \text{opposite} = \text{hypotenuse} \times \sin(\theta) = 15000 \times 0.819152 \approx 12287.281 \text{ feet} \][/tex]
5. Round to the nearest whole number:
- The rounded distance is 12,287 feet.
So, the distance from the bird (B) to its nest (N) is approximately 12,287 feet.
Therefore, the correct answer is 12,287 feet.
Here's a step-by-step solution:
1. Understand the problem:
- Observer (O) sees the bird (B) at an angle of [tex]\(55^\circ\)[/tex] from the horizontal line to its nest (N).
- The distance from the observer (O) to the bird (B) is 15,000 feet.
2. Identify the formula:
- In a right triangle, the sine of an angle is given by the ratio of the length of the opposite side to the hypotenuse. Here, we have
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
- Here, [tex]\(\theta = 55^\circ\)[/tex], the opposite side is the distance from the bird to its nest (N), and the hypotenuse is the distance from the observer (O) to the bird (B).
3. Convert the angle from degrees to radians:
- We convert [tex]\(55^\circ\)[/tex] to radians because trigonometric calculations are typically done in radians. Using the conversion factor [tex]\(\pi \text{ radians} = 180^\circ\)[/tex]:
[tex]\[ \theta = \frac{55 \times \pi}{180} \approx 0.959931 \text{ radians} \][/tex]
4. Calculate the distance from the bird to its nest:
- Using the sine function:
[tex]\[ \sin(55^\circ) = \sin(0.959931) \approx 0.819152 \][/tex]
- Thus,
[tex]\[ \text{opposite} = \text{hypotenuse} \times \sin(\theta) = 15000 \times 0.819152 \approx 12287.281 \text{ feet} \][/tex]
5. Round to the nearest whole number:
- The rounded distance is 12,287 feet.
So, the distance from the bird (B) to its nest (N) is approximately 12,287 feet.
Therefore, the correct answer is 12,287 feet.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.