At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

A kite has vertices at [tex]$(2,4)$, [tex]$(5,4)$[/tex], [tex]$(5,1)$[/tex], and $(0,-1)$[/tex].

What is the approximate perimeter of the kite? Round to the nearest tenth.

A. 11.3 units
B. 13.6 units
C. 16.8 units
D. 20.0 units


Sagot :

To find the perimeter of the kite, we need to calculate the lengths of its sides and then sum these lengths.

First, label the vertices of the kite as follows:
- [tex]\( A = (2, 4) \)[/tex]
- [tex]\( B = (5, 4) \)[/tex]
- [tex]\( C = (5, 1) \)[/tex]
- [tex]\( D = (0, -1) \)[/tex]

Next, we calculate the distances between consecutive vertices using the distance formula:
[tex]\[ \text{Distance between } (x_1, y_1) \text{ and } (x_2, y_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

1. Calculate the distance [tex]\( AB \)[/tex]:
[tex]\[ AB = \sqrt{(5 - 2)^2 + (4 - 4)^2} = \sqrt{3^2 + 0^2} = \sqrt{9} = 3.0 \][/tex]

2. Calculate the distance [tex]\( BC \)[/tex]:
[tex]\[ BC = \sqrt{(5 - 5)^2 + (1 - 4)^2} = \sqrt{0^2 + (-3)^2} = \sqrt{9} = 3.0 \][/tex]

3. Calculate the distance [tex]\( CD \)[/tex]:
[tex]\[ CD = \sqrt{(5 - 0)^2 + (1 - (-1))^2} = \sqrt{5^2 + 2^2} = \sqrt{25 + 4} = \sqrt{29} \approx 5.4 \][/tex]

4. Calculate the distance [tex]\( DA \)[/tex]:
[tex]\[ DA = \sqrt{(0 - 2)^2 + (-1 - 4)^2} = \sqrt{(-2)^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.4 \][/tex]

To find the perimeter of the kite, we sum these distances:
[tex]\[ \text{Perimeter} = AB + BC + CD + DA \approx 3.0 + 3.0 + 5.4 + 5.4 = 16.8 \][/tex]

Thus, the approximate perimeter of the kite, rounded to the nearest tenth, is:
[tex]\[ \boxed{16.8} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.