Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the greatest common factor (GCF) of the expressions [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex], we need to determine both the GCF of the numerical coefficients and the GCF of the variable parts separately. Here’s a step-by-step breakdown:
1. Identify the coefficients and the variable parts in each term:
- For [tex]\(6x^5\)[/tex]:
- Coefficient: 6
- Variable part: [tex]\(x^5\)[/tex]
- For [tex]\(12x^4\)[/tex]:
- Coefficient: 12
- Variable part: [tex]\(x^4\)[/tex]
2. Find the GCF of the coefficients:
- The coefficients are 6 and 12.
- The prime factorizations are:
- [tex]\(6 = 2 \times 3\)[/tex]
- [tex]\(12 = 2^2 \times 3\)[/tex]
- The common prime factors with the smallest power are:
- [tex]\(2\)[/tex]
- [tex]\(3\)[/tex]
- Therefore, the GCF of 6 and 12 is:
- [tex]\(2 \times 3 = 6\)[/tex]
3. Find the GCF of the variable parts:
- The variable parts are [tex]\(x^5\)[/tex] and [tex]\(x^4\)[/tex].
- The GCF of [tex]\(x^5\)[/tex] and [tex]\(x^4\)[/tex] is determined by the lowest power of [tex]\(x\)[/tex] common to both terms, which is [tex]\(x^4\)[/tex].
4. Combine the GCF of the coefficients and the variables:
- The GCF of the coefficients is 6.
- The GCF of the variable parts is [tex]\(x^4\)[/tex].
- Therefore, the GCF of the entire terms [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex] is:
- [tex]\(6x^4\)[/tex]
Thus, the greatest common factor of [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex] is [tex]\(6x^4\)[/tex].
The correct answer is:
[tex]\[ \boxed{6x^4} \][/tex]
1. Identify the coefficients and the variable parts in each term:
- For [tex]\(6x^5\)[/tex]:
- Coefficient: 6
- Variable part: [tex]\(x^5\)[/tex]
- For [tex]\(12x^4\)[/tex]:
- Coefficient: 12
- Variable part: [tex]\(x^4\)[/tex]
2. Find the GCF of the coefficients:
- The coefficients are 6 and 12.
- The prime factorizations are:
- [tex]\(6 = 2 \times 3\)[/tex]
- [tex]\(12 = 2^2 \times 3\)[/tex]
- The common prime factors with the smallest power are:
- [tex]\(2\)[/tex]
- [tex]\(3\)[/tex]
- Therefore, the GCF of 6 and 12 is:
- [tex]\(2 \times 3 = 6\)[/tex]
3. Find the GCF of the variable parts:
- The variable parts are [tex]\(x^5\)[/tex] and [tex]\(x^4\)[/tex].
- The GCF of [tex]\(x^5\)[/tex] and [tex]\(x^4\)[/tex] is determined by the lowest power of [tex]\(x\)[/tex] common to both terms, which is [tex]\(x^4\)[/tex].
4. Combine the GCF of the coefficients and the variables:
- The GCF of the coefficients is 6.
- The GCF of the variable parts is [tex]\(x^4\)[/tex].
- Therefore, the GCF of the entire terms [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex] is:
- [tex]\(6x^4\)[/tex]
Thus, the greatest common factor of [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex] is [tex]\(6x^4\)[/tex].
The correct answer is:
[tex]\[ \boxed{6x^4} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.