Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the greatest common factor (GCF) of the expressions [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex], we need to determine both the GCF of the numerical coefficients and the GCF of the variable parts separately. Here’s a step-by-step breakdown:
1. Identify the coefficients and the variable parts in each term:
- For [tex]\(6x^5\)[/tex]:
- Coefficient: 6
- Variable part: [tex]\(x^5\)[/tex]
- For [tex]\(12x^4\)[/tex]:
- Coefficient: 12
- Variable part: [tex]\(x^4\)[/tex]
2. Find the GCF of the coefficients:
- The coefficients are 6 and 12.
- The prime factorizations are:
- [tex]\(6 = 2 \times 3\)[/tex]
- [tex]\(12 = 2^2 \times 3\)[/tex]
- The common prime factors with the smallest power are:
- [tex]\(2\)[/tex]
- [tex]\(3\)[/tex]
- Therefore, the GCF of 6 and 12 is:
- [tex]\(2 \times 3 = 6\)[/tex]
3. Find the GCF of the variable parts:
- The variable parts are [tex]\(x^5\)[/tex] and [tex]\(x^4\)[/tex].
- The GCF of [tex]\(x^5\)[/tex] and [tex]\(x^4\)[/tex] is determined by the lowest power of [tex]\(x\)[/tex] common to both terms, which is [tex]\(x^4\)[/tex].
4. Combine the GCF of the coefficients and the variables:
- The GCF of the coefficients is 6.
- The GCF of the variable parts is [tex]\(x^4\)[/tex].
- Therefore, the GCF of the entire terms [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex] is:
- [tex]\(6x^4\)[/tex]
Thus, the greatest common factor of [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex] is [tex]\(6x^4\)[/tex].
The correct answer is:
[tex]\[ \boxed{6x^4} \][/tex]
1. Identify the coefficients and the variable parts in each term:
- For [tex]\(6x^5\)[/tex]:
- Coefficient: 6
- Variable part: [tex]\(x^5\)[/tex]
- For [tex]\(12x^4\)[/tex]:
- Coefficient: 12
- Variable part: [tex]\(x^4\)[/tex]
2. Find the GCF of the coefficients:
- The coefficients are 6 and 12.
- The prime factorizations are:
- [tex]\(6 = 2 \times 3\)[/tex]
- [tex]\(12 = 2^2 \times 3\)[/tex]
- The common prime factors with the smallest power are:
- [tex]\(2\)[/tex]
- [tex]\(3\)[/tex]
- Therefore, the GCF of 6 and 12 is:
- [tex]\(2 \times 3 = 6\)[/tex]
3. Find the GCF of the variable parts:
- The variable parts are [tex]\(x^5\)[/tex] and [tex]\(x^4\)[/tex].
- The GCF of [tex]\(x^5\)[/tex] and [tex]\(x^4\)[/tex] is determined by the lowest power of [tex]\(x\)[/tex] common to both terms, which is [tex]\(x^4\)[/tex].
4. Combine the GCF of the coefficients and the variables:
- The GCF of the coefficients is 6.
- The GCF of the variable parts is [tex]\(x^4\)[/tex].
- Therefore, the GCF of the entire terms [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex] is:
- [tex]\(6x^4\)[/tex]
Thus, the greatest common factor of [tex]\(6x^5\)[/tex] and [tex]\(12x^4\)[/tex] is [tex]\(6x^4\)[/tex].
The correct answer is:
[tex]\[ \boxed{6x^4} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.